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Outline

= Material
= Small pig data, 6K SNP chip
= Methods
= 2 Bayesian models
= Estimation of hyper parameters
= 10X cross validation
= Results etc
= Model fit, prediction, ...
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Material: a small pig data set for a
“case study”

= Originally 169 genotyped boars

= Using 6K Illumina porcine SNP array

= After combining with phenotypes and marker edits:
= 127 genotyped boars with reasonable progeny groups
= 3463 good polymorphic SNP markers

= Trait:
= Boar EBV for growth
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Methods: association model

with scaling factors for variance modelling

All markers Allele design  Allele additive

included \ matrlj/ effects
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b,~N(0,1)

(bi Models the variance
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Priors for variance terms

or how to model 3463 marker variances on 127 observations

One common distribution: 2-Mixture distribution:

“Hierarchical Variance “Variable Selection
Model” Model”
| M/p<\¢
\ \
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Prior distributions
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1 common distribution
2
4)5 ~N(0,07,)
o IS ~ variance per
marker and is estimated
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2-mixture distribution

b, ~m,N (0,07 )+ N(0,07)

1
O s 1s ~ variance per
“on” marker and is
estimated

2
O ¢ Is ~ variance per
“off” marker and is set
small (e.g. 1% total)

Proportions “"on” and
“off"” are set and
determine peakedness of
profile
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Further model details:

= MCMC based on Gibbs samplers
= Normal for mean, allele effects, scaling factors

= Inverse chi-square for 2 variance components: hyper variance
for markers, residual variance

= Add functions of parameters:
= total genomic values
= genomic variance
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Analysis and validation

= Step 1: hyper parameters estimated using all data
(IIREMLII)

= Step 2: 10X cross validation with hyper parameters
set fixed ("BLUP")
= Data randomly divided in 10 groups

= In 10 analyses, data in 1 group was left out and predicted
based on other 9 groups

= Predictions collected for observation from analysis where
observation was left out
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Results: estimated variances

Prior
value
- 2 2 2 2 2
Model T, O . Og Os.9u  Oror BF

VSM 10 429 368 163 797 -470.3
VSM 20 356 441 4.00 797 -458.5
VSM 40 253 529 0.88 782 45238
HVM 100 215 598 0.20 813 -433.1

HVM fits best: lowest residual variance, highest
genomic variance, highest Bayes Factor, although some
overestimation in total variance (raw variance 776).
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Results: prediction

vpaiﬁé Eitir@sed For predicted EBVs
Model us 05,0, correlation regression
VSM 10 16.3 0.39 0.98
VSM 20 4 0.46 1.05
VSM 40 0.88 0.48 1.01
HVM 100 0.2 0.5 0.99

HVM predicts best but VSM with large proportion
markers “on” comes close.
Predictions are all (close to) unbiased.
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Posterior probabilities for VSM
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Conclusions

= Bayesian models fit and predict well

= Despite having 30x more predictors than observations
= Only slight overfit in variance ? (2-4%)
= Unbiased predictions with hyper parameters estimated

= Setting hyper parameters away from estimates gave biased
predictions

= Behaves like we're used from BLUP for predicting
= explained variance ~75%, prediction correlation ~50%
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Conclusions

A model with 1 common distribution for variance
terms (HVM) performed best

= Signs that in this small data identification of associated
markers was difficult

= But even then sensible predictions can be made, mostly based on
“genomic relationship”

Even in small data and with medium-dense
markers Genomic Predictions work and behave
well.
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