

Faculty of Agriculture and Nutritional Science

CAU

Christian-Albrechts-University of Kiel

Institute of Animal Breeding and Husbandry

A Mixture Genetic Model for whole genome analyses

D. Habier^{1,3}
L. R. Totir²
R. L. Fernando³

¹Institute of Animal Breeding and Husbandry Christian-Albrechts-University of Kiel ²Pioneer Hi-Bred International, Inc., Johnston, Iowa ³Department of Animal Science and Center of Integrated Animal Genomics Iowa State University, Ames

Motivation

Genomic Selection (GS)

- Accuracy decreases rapidly after training
 - Use of linkage disequilibrium (LD) and co-segregation
- Model dominance and epistasis
 - Difficult to accommodate with linear models

Mixture genetic model

Objectives

- To present an approximate Bayesian approach feasible for whole genome analyses using a mixture genetic model
- To study the consequences of the approximations with a simulated fine mapping scenario

Fine-mapping scenario

Genome segment

- Length 1 cM
- 20 SNPs (Spacing 0.05 cM)
- 1 QTL ($h^2 = 0.05$)
- SNPs and QTL were in LD

Task: Find the SNP interval that contains the QTL

Mixture Genetic Model

Additive QTL model for each SNP interval k

$$\mathbf{y} = \mathbf{1}\mu + \mathbf{q}_{k}\alpha + \mathbf{e}_{k}$$

 \mathbf{q}_{k} is the vector of unobservable QTL genotypes (0,1 or 2)

Exact Bayesian Approach

Exact MCMC-Sampler

$$y \longrightarrow q \Longrightarrow G_Q \Longrightarrow O_Q \Longrightarrow O_M \Longrightarrow G_M \longleftarrow M$$

G - ordered genotypes

O - segregation indicators

M - unordered SNP genotypes

$$\theta_{il} = (\mathbf{O}_{Mil}, \mathbf{G}_{Mil})$$
 individual i , locus l

Overlapping blocks for peeling Iowa State UNIVERSITY

Locus block

Pedigree block

911	0 12	θ_{12}	θ_{14}	θ_{15}	θ_{16}	•••	θ_{1M}	
θ_{21}	022	θ_{23}	θ_{24}	θ_{25}	θ_{26}	•••	θ_{2M}	
θ_{31}	θ_{32}	θ_{33}	θ_{34}	θ_{35}	θ_{36}	•••	θ_{3M}	
θ_{41}	θ_{42}	θ_{43}	θ_{44}	θ_{45}	θ_{46}	•••	θ_{4M}	
•••	•••						•••	
•••			•••				•••	
•••					•••		•••	
•••							•••	
θ_{N1}	θ_{N2}	θ_{N3}	θ_{N4}	$\theta_{ ext{N4}}$	θ_{N4}	•••	θ_{NM}	

Approximate 2-step approach

Simulation

Simple pedigree

- 810 individuals in 5 generations
- 10 males are mated to 100 founder females each generation

Complex pedigree with loops

- 1000 individuals in 5 generations
- 25 males are mated to 100 females each discrete generation

Results: Simple pedigree

- 16 replicates
- No pedigree blocks
- Locus block: 8 SNP, 3 overlapping

		Mean absolute difference for QTL			
	Accuracy of qα	Position (cM)	Effect	Genotype	
Method/Range	0-1	0-1	0.325	0, 1 or 2	
Exact	0.865	0.09	0.10	0.31	
Approximate	0.830	0.11	0.09	0.38	

Results: Complex pedigree

- 16 replicates
- SNP-Pedigree block: sire, its mates, their parents and offspring
- Locus block: 8 SNP, 3 overlapping
- QTL-Pedigree blocks

	_	Mean absolute difference for QTL			
	Accuracy of qa	Position (cM)	Effect	Genotype	
Method/Range	0-1	0-1	0.325	0, 1 or 2	
Approximate	0.95	0.08	0.07	0.23	

Discussion and Conclusions

Pedigree and locus blocking was not feasible with the exact approach

Approximate 2-step approach

- Large complex pedigrees and high-density SNPs feasible
- Limited loss of accuracy of genotypic values
- Limited loss of precision to locate QTL
- Markers are sampled once for all traits
- Reduction of computing time

Thank you for your attention!