Faculty of Agriculture and Nutritional Science CAU Christian-Albrechts-University of Kiel Institute of Animal Breeding and Husbandry ## A Mixture Genetic Model for whole genome analyses D. Habier^{1,3} L. R. Totir² R. L. Fernando³ ¹Institute of Animal Breeding and Husbandry Christian-Albrechts-University of Kiel ²Pioneer Hi-Bred International, Inc., Johnston, Iowa ³Department of Animal Science and Center of Integrated Animal Genomics Iowa State University, Ames ### Motivation #### Genomic Selection (GS) - Accuracy decreases rapidly after training - Use of linkage disequilibrium (LD) and co-segregation - Model dominance and epistasis - Difficult to accommodate with linear models Mixture genetic model ## Objectives - To present an approximate Bayesian approach feasible for whole genome analyses using a mixture genetic model - To study the consequences of the approximations with a simulated fine mapping scenario ## Fine-mapping scenario #### Genome segment - Length 1 cM - 20 SNPs (Spacing 0.05 cM) - 1 QTL ($h^2 = 0.05$) - SNPs and QTL were in LD Task: Find the SNP interval that contains the QTL ## Mixture Genetic Model Additive QTL model for each SNP interval k $$\mathbf{y} = \mathbf{1}\mu + \mathbf{q}_{k}\alpha + \mathbf{e}_{k}$$ \mathbf{q}_{k} is the vector of unobservable QTL genotypes (0,1 or 2) ## Exact Bayesian Approach #### Exact MCMC-Sampler $$y \longrightarrow q \Longrightarrow G_Q \Longrightarrow O_Q \Longrightarrow O_M \Longrightarrow G_M \longleftarrow M$$ **G** - ordered genotypes O - segregation indicators **M** - unordered SNP genotypes $$\theta_{il} = (\mathbf{O}_{Mil}, \mathbf{G}_{Mil})$$ individual i , locus l # Overlapping blocks for peeling Iowa State UNIVERSITY #### Locus block **Pedigree** block | 911 | 0 12 | θ_{12} | θ_{14} | θ_{15} | θ_{16} | ••• | θ_{1M} | | |---------------|---------------|---------------|---------------|---------------------|---------------|-----|----------------------|--| | θ_{21} | 022 | θ_{23} | θ_{24} | θ_{25} | θ_{26} | ••• | θ_{2M} | | | θ_{31} | θ_{32} | θ_{33} | θ_{34} | θ_{35} | θ_{36} | ••• | θ_{3M} | | | θ_{41} | θ_{42} | θ_{43} | θ_{44} | θ_{45} | θ_{46} | ••• | θ_{4M} | | | ••• | ••• | | | | | | ••• | | | ••• | | | ••• | | | | ••• | | | ••• | | | | | ••• | | ••• | | | ••• | | | | | | | ••• | | | θ_{N1} | θ_{N2} | θ_{N3} | θ_{N4} | $\theta_{ ext{N4}}$ | θ_{N4} | ••• | θ_{NM} | | | | | | | | | | | | ## Approximate 2-step approach ## Simulation #### Simple pedigree - 810 individuals in 5 generations - 10 males are mated to 100 founder females each generation #### Complex pedigree with loops - 1000 individuals in 5 generations - 25 males are mated to 100 females each discrete generation ## Results: Simple pedigree - 16 replicates - No pedigree blocks - Locus block: 8 SNP, 3 overlapping | | | Mean absolute difference for QTL | | | | |--------------|----------------|----------------------------------|--------|-----------|--| | | Accuracy of qα | Position (cM) | Effect | Genotype | | | Method/Range | 0-1 | 0-1 | 0.325 | 0, 1 or 2 | | | Exact | 0.865 | 0.09 | 0.10 | 0.31 | | | Approximate | 0.830 | 0.11 | 0.09 | 0.38 | | ## Results: Complex pedigree - 16 replicates - SNP-Pedigree block: sire, its mates, their parents and offspring - Locus block: 8 SNP, 3 overlapping - QTL-Pedigree blocks | | _ | Mean absolute difference for QTL | | | | |--------------|----------------|----------------------------------|--------|-----------|--| | | Accuracy of qa | Position (cM) | Effect | Genotype | | | Method/Range | 0-1 | 0-1 | 0.325 | 0, 1 or 2 | | | Approximate | 0.95 | 0.08 | 0.07 | 0.23 | | ## Discussion and Conclusions Pedigree and locus blocking was not feasible with the exact approach #### Approximate 2-step approach - Large complex pedigrees and high-density SNPs feasible - Limited loss of accuracy of genotypic values - Limited loss of precision to locate QTL - Markers are sampled once for all traits - Reduction of computing time ## Thank you for your attention!