Accuracies of different types of MAS-EBV in the French MAS Program

F.Guillaume, J. Tarres, D. Boichard, T. Druet, and S. Fritz

AGRICULTURE

ALIMENTATION

ENVIRONNEMENT

INTRODUCTION

- Dense maps provide
 - Better estimates of QTL locations
 - Better QTL transmission probabilities (ie close to 1 or 0) in a pedigree
 - LD information, ie across family (or across founder) PID information
- Therefore, they should improve MAS efficiency
- → Practical results from the French MAS experience
- → MAS moving from low to dense marker information

Description of MAS in France

- Current MAS program (2001-2008)
 - Microsatellites markers low density map :
 - 2-5 markers by QTL (45 markers for 14 QTLs)
 - 5-20 cM between markers
 - Linkage Equilibrium within family estimation
- Situation in 2008
 - ~70 000 genotyped animal (Hol)
 - Confirmation of the QTL used in the evaluation

Evolution: QTL fine-mapping resource population

- ~3200 sires genotyped with the 54k SNP Illumina chip
- 15 traits
- Genotypes available since May
- → Confirm and Fine Map QTL
- → Identify Haplotypes in LD with QTL

Evolution of MAS-EBV

- From:
 - a Fernando-Grossman model using 2 to 5 QTL per trait.

 OTL marked with few microsatellites markers
- To: an haplotype-based model using many QTL QTL followed with the 54k SNP chip

How large is the gain?

Validation sample

- 468 Holstein sires receiving their first official proof in June 2008
- Information available in 2004:
 - phenotypes from relatives
 - microsatellite genotypes
- SNP information obtained in 2008 for this batch of males as well as for a population of older tested sires
- → Comparison of DYD in 2008 with early prediction in 2004 based on microsatellites or SNP information.

Tested Models

Trait: milk yield ($h^2 = 0.30$)

Fernando-Grossman model (4 QTL)

$$y_i = \mu + u_i + \sum_{j=1}^{n} (v_{ij}^p + v_{ij}^m) + e_i$$
 with $v_i^p = p_i^p v_s^p + (1 - p_i^p) v_s^m + \epsilon_i^p$

Haplotype based model (4 QTL or 24 QTL)

$$y_i = \mu + u_i + x_i' h + e_i$$

Regression on SNPs (23 SNP within the 4 QTL region)

$$y_i = \mu + u_i + x_i' \beta + e_i$$

Results

Correlation between milk yield DYD in 2008 and different types of MAS-EBV (2004 phenotypic situation)

N=468

Type	Correlation
Polygenic	0.406
FG-MAS	0.408
Haplotypes (4 QTL)	0.509
SNP regression (4 QTL)	0.462
Haplotypes (24 QTL)	0.560

Results

Distribution of estimates of haplotypes effects around DGAT1

- Haplotypes of 4 SNP
- Few haplotypes encountered in population
- 2 main haplotypes whose effects seems to correspond to DGAT1 mutation

Discussion: Fine Mapping results

- Work still in progress...
- Partial conclusion :
 - QTL previously used in the MAS program have been confirmed
 - QTL genetic variances previously overestimated
 - Many new QTL have been found
 - Correlations goes up to 0.56 with all already finemapped QTL (still incomplete)

Discussion

- Note that upper bound correlation lower than 1 (around 0.85) due to incomplete accuracy of DYD
- Correlations in agreement with the proportion of genetic variance explained by the QTLs
- Need to confirm validity and efficiency of the haplotype MAS approach with low heritability traits
- Work in progress to compare efficiency of this haplotype strategy with that of genomic selection

Conclusions

- Further works need to be done but results are promising
- Haplotype-based model provides a satisfactory EBV estimation at a low computation cost
- Haplotypes probably extract more information than single SNP
- Comparison with genomic selection is needed

Acknowledgements

This study is a collaboration between:

- Institut de l'élevage
- INRA
- UNCEIA

Labogena

LABOGENA

