# Relationship between milk production traits and fertility in Austrian Simmental cattle





Birgit Gredler<sup>1</sup>, Christian Fuerst<sup>2</sup>, Johann Sölkner<sup>1</sup>

- <sup>1</sup> BOKU University of Natural Resources and Applied Life Sciences – Dept. of Sustainable Agricultural Systems, Vienna
- <sup>2</sup> ZuchtData EDV- Dienstleistungen GmbH, Vienna



#### Contents



- Introduction
- Objectives
- Material
- Methods
- Results
- Conclusions

#### Introduction



- Decreased fertility main reason for involuntary culling in dairy cows (23.5% culled due to reproductive disorders in 2006 in Simmental cattle)
- Many different reasons for reproductive disorders
- In early lactation negative energy balance is the main reason for poor reproductive performance
- Negative energy balance is a major problem in early lactation – high milk energy output and low energy input (relatively low feed intake)

#### Introduction



- Monitoring energy balance:
  - Analysis of blood metabolites
  - Dietary evaluation
  - Body Condition Score
  - Data from routine milk recording

# Milk recording data



#### Milk urea nitrogen (MUN)

 Higher levels of MUN were negatively related to reproductive performance of dairy cows (Hojmann et al., 2004).

#### Fat-Protein-ratio (F:P)

 Useful predictor of dairy cows at high risk of negative energy balance, ovarian cysts, ketosis, lameness, ... (Mulligan et al., 2006).

#### Milk lactose percentage

- Higher milk lactose content in the first weeks postpartum was associated with resumption of luteal function (Reksen et al., 2002).
- Higher milk lactose percentage was correlated to higher pregnancy rates early after calving (Buckley et al., 2003).

## Objectives



- Identify possible predictors of fertility for use in the genetic evaluation for fertility
  - estimation of genetic parameters of these traits
- Fertility traits: days to first service (DFS) days open (DO)
- Auxiliary traits analysed as measures of energy balance and metabolic status of cows:
  - Milk urea nitrogen (MUN)
  - Fat:Protein-ratio (F:P)
  - Milk lactose percentage (MLP)

#### Material



- In total 12,828 dual purpose Simmental cows
- 7 lactations
- 1,505 herds in Lower Austria
- Days to first service (DFS) = number of days between calving and first insemination
- Days open (DO) = number of days between calving and last insemination
- Milk yield (Mkg), MUN, MLP were routinely assessed during milk recording

#### Material



- Fat-protein-ratio (F:P) was computed from milk fat and protein percentages of each record
- Closest milk record to the date of first insemination was used
- Data restrictions:

■ DFS: 20 – 200 days

■ DO: 20 – 365 days

■ MUN: 1 – 70 mg/100ml

■ F:P: 0.5 – 2.5

■ MLP: 3 – 6%

# Descriptive Statistics



| Trait | N      | Mean  | SD   | MIN  | MAX  |
|-------|--------|-------|------|------|------|
| DFS   | 12,828 | 64.7  | 22.6 | 20   | 199  |
| DO    | 12,828 | 100.6 | 58.1 | 20   | 365  |
| MKg   | 12,828 | 27.3  | 7.1  | 4.8  | 69   |
| MUN   | 12,828 | 20.5  | 9.4  | 1    | 68   |
| F:P   | 12,828 | 1.24  | 0.22 | 0.69 | 2.43 |
| MLP   | 12,828 | 4.88  | 0.17 | 3.5  | 5.5  |

## Distribution MUN





## Distribution F:P





Fat:Protein-ratio

#### Distribution MLP





Milk lactose percentage

## Statistical model



 Estimation by REML with VCE5.1, trivariate analyses, animal model

#### DFS and DO:

- Fixed effects:
- Herd\*year\*season interaction of calving (n=3,447)
- Calving age\*lactation interaction (n=33)
- Random additive genetic effect of animal

#### Statistical model



#### MKg, MUN, F:P, MLP:

- Fixed effects:
- Herd\*year\*month interaction of test-day of milk recording (n=1,836)
- Lactation (n=7)
- AM/PM milking (n=2)
- Continuous effect of days in milk after calving (linear and quadratic)
- Random additive genetic effect of animal

## Results



| Trait | DFS    | DO     | Mkg    | MUN    | F:P    | MLP    |
|-------|--------|--------|--------|--------|--------|--------|
|       |        |        | )      |        |        |        |
| DFS   | 0.022  | 1.00   | 0.65   | -0.21  | 0.26   | -0.12  |
|       | ±0.006 | n.e.   | ±0.13  | ±0.10  | ±0.11  | ±0.07  |
| DO    | 0.34   | 0.023  | 0.75   | -0.14  | 0.10   | -0.20  |
|       | ***    | ±0.005 | ±0.089 | ±0.13  | ±0.073 | ±0.12  |
| Mkg   | -0.14  | 0.01   | 0.19   | 0.05   | 0.33   | -0.26  |
|       | ***    | ns     | ±0.017 | ±0.055 | ±0.08  | ±0.052 |
| MUN   | 0.04   | 0.00   | 0.11   | 0.22   | 0.06   | 0.12   |
|       | ***    | ns     | ***    | ±0.017 | ±0.048 | ±0.058 |
| F:P   | -0.07  | 0.00   | 0.00   | 0.11   | 0.10   | 0.00   |
|       | ***    | ns     | ns     | ***    | ±0.014 | ±0.044 |
| MLP   | -0.12  | -0.02  | -0.04  | 0.03   | -0.06  | 0.39   |
|       | ***    | ns     | ***    | **     | ***    | ±0.018 |

## Results - Heritabilities



| Trait | DFS             | DO              | Mkg            | MUN            | F:P            | MLP             |
|-------|-----------------|-----------------|----------------|----------------|----------------|-----------------|
| DFS   | 0.022<br>±0.006 | 1.00<br>n.e.    | 0.65<br>±0.13  | -0.21<br>±0.10 | 0.26<br>±0.11  | -0.12<br>±0.07  |
| DO    | 0.34            | 0.023<br>±0.005 | 0.75<br>±0.089 | -0.14<br>±0.13 | 0.10<br>±0.073 | -0.20<br>±0.12  |
| Mkg   | -0.14<br>***    | 0.01<br>ns      | 0.19<br>±0.017 | 0.05<br>±0.055 | 0.33<br>±0.08  | -0.26<br>±0.052 |
| MUN   | 0.04            | 0.00<br>ns      | 0.11           | 0.22<br>±0.017 | 0.06<br>±0.048 | 0.12<br>±0.058  |
| F:P   | -0.07<br>***    | 0.00<br>ns      | 0.00<br>ns     | 0.11           | 0.10<br>±0.014 | 0.00<br>±0.044  |
| MLP   | -0.12<br>***    | -0.02<br>ns     | -0.04<br>***   | 0.03           | -0.06<br>***   | 0.39<br>±0.018  |

## Results - genetic correlations



| Trait | DFS             | DO              | Mkg            | MUN            | F:P            | MLP             |
|-------|-----------------|-----------------|----------------|----------------|----------------|-----------------|
| DFS   | 0.022<br>±0.006 | 1.00<br>n.e.    | 0.65<br>±0.13  | -0.21<br>±0.10 | 0.26<br>±0.11  | -0.12<br>±0.07  |
| DO    | 0.34            | 0.023<br>±0.005 | 0.75<br>±0.089 | -0.14<br>±0.13 | 0.10<br>±0.073 | -0.20<br>±0.12  |
| Mkg   | -0.14<br>***    | 0.01<br>ns      | 0.19<br>±0.017 | 0.05<br>±0.055 | 0.33<br>±0.08  | -0.26<br>±0.052 |
| MUN   | 0.04            | 0.00<br>ns      | 0.11           | 0.22<br>±0.017 | 0.06<br>±0.048 | 0.12<br>±0.058  |
| F:P   | -0.07<br>***    | 0.00<br>ns      | 0.00<br>ns     | 0.11           | 0.10<br>±0.014 | 0.00<br>±0.044  |
| MLP   | -0.12<br>***    | -0.02<br>ns     | -0.04<br>***   | 0.03           | -0.06<br>***   | 0.39<br>±0.018  |

## Results - genetic correlations



| Trait | DFS             | DO              | Mkg            | MUN            | F:P            | MLP             |
|-------|-----------------|-----------------|----------------|----------------|----------------|-----------------|
| DFS   | 0.022<br>±0.006 | 1.00<br>n.e.    | 0.65<br>±0.13  | -0.21<br>±0.10 | 0.26<br>±0.11  | -0.12<br>±0.07  |
| DO    | 0.34<br>***     | 0.023<br>±0.005 | 0.75<br>±0.089 | -0.14<br>±0.13 | 0.10<br>±0.073 | -0.20<br>±0.12  |
| Mkg   | -0.14<br>***    | 0.01<br>ns      | 0.19<br>±0.017 | 0.05<br>±0.055 | 0.33<br>±0.08  | -0.26<br>±0.052 |
| MUN   | 0.04            | 0.00<br>ns      | 0.11           | 0.22<br>±0.017 | 0.06<br>±0.048 | 0.12<br>±0.058  |
| F:P   | -0.07<br>***    | 0.00<br>ns      | 0.00<br>ns     | 0.11           | 0.10<br>±0.014 | 0.00<br>±0.044  |
| MLP   | -0.12<br>***    | -0.02<br>ns     | -0.04<br>***   | 0.03           | -0.06<br>***   | 0.39<br>±0.018  |

## Results - genetic correlations



| Trait | DFS    | DO     | Mkg    | MUN    | F:P    | MLP    |
|-------|--------|--------|--------|--------|--------|--------|
|       |        |        |        |        |        |        |
| DFS   | 0.022  | 1.00   | 0.65   | -0.21  | 0.26   | -0.12  |
|       | ±0.006 | n.e.   | ±0.13  | ±0.10  | ±0.11  | ±0.07  |
| DO    | 0.34   | 0.023  | 0.75   | -0.14  | 0.10   | -0.20  |
|       | ***    | ±0.005 | ±0.089 | ±0.13  | ±0.073 | ±0.12  |
| Mkg   | -0.14  | 0.01   | 0.19   | 0.05   | 0.33   | -0.26  |
|       | ***    | ns     | ±0.017 | ±0.055 | ±0.08  | ±0.052 |
| MUN   | 0.04   | 0.00   | 0.11   | 0.22   | 0.06   | 0.12   |
|       | ***    | ns     | ***    | ±0.017 | ±0.048 | ±0.058 |
| F:P   | -0.07  | 0.00   | 0.00   | 0.11   | 0.10   | 0.00   |
|       | ***    | ns     | ns     | ***    | ±0.014 | ±0.044 |
| MLP   | -0.12  | -0.02  | -0.04  | 0.03   | -0.06  | 0.39   |
|       | ***    | ns     | ***    | **     | ***    | ±0.018 |

# Results - phenotypic correlations



|       | 5-50   | 50       |        |               |        |                    |
|-------|--------|----------|--------|---------------|--------|--------------------|
| Trait | DFS    | DO       | Mkg    | MUN           | F:P    | MLP                |
|       |        |          |        |               |        |                    |
| DFS   | 0.022  | 1.00     | 0.65   | -0.21         | 0.26   | -0.12              |
|       |        |          | ±0.13  | ±0.10         | ±0.11  | ±0.07              |
|       | ±0.006 | n.e.     | ±0.15  | <u>+</u> 0.10 | ±0.11  | ±0.07              |
| DO    | 0.34   | 0.023    | 0.75   | -0.14         | 0.10   | -0.20              |
|       | ***    | ±0.005   | ±0.089 | ±0.13         | ±0.073 | ±0.12              |
|       | ^^^    | <u> </u> | 0.000  | ±0.10         |        |                    |
| Mkg   | -0.14  | 0.01     | 0.19   | 0.05          | 0.33   | -0.26              |
| 9     |        |          | ±0.017 | ±0.055        | ±0.08  | ±0.052             |
|       | ***    | ns       |        | ±0.055        |        |                    |
| MUN   | 0.04   | 0.00     | 0.11   | 0.22          | 0.06   | 0.12               |
|       | ***    |          | ***    | ±0.017        | ±0.048 | ±0.058             |
|       | ***    | ns       | ***    | <u> </u>      | ±0.040 | ±0.000             |
| F:P   | -0.07  | 0.00     | 0.00   | 0.11          | 0.10   | 0.00               |
|       |        |          |        |               | ±0.014 | ±0.044             |
|       | ***    | ns       | ns     | ***           |        | ±0.0 <del>11</del> |
| MLP   | -0.12  | -0.02    | -0.04  | 0.03          | -0.06  | 0.39               |
|       |        |          |        |               |        | ±0.018             |
|       | ***    | ns       | ***    | **            | ***    |                    |

#### Conclusions



- Substantial genetic variance exists for MUN, F:P and MLP
- Genetic correlations indicate that these traits can be used as predictors of fertility
- Further studies:
  - To confirm results consideration of a higher number of cows and additional fertility traits (NR56, number of inseminations, ...)
  - Analysis of a combination of MUN and milk proteinpercentage

