session 38, abstract number 1214 corresponding auther: roswitha.baumung@boku.ac.at

A novel approach for estimating allele frequencies of lethal autosomal-recessive genetic disorders

Manatrinon Supawadee Egger-Danner Christa Baumung Roswitha*

University of Natural Resources and Applied Life Sciences Vienna - Division of Livestock Sciences

Introduction

* 1,830,125 records of BS in Austria

* 4 lethal autosomal recessive genetic disorders

- Arachnomelia (A)
- Spinal Dysmyelination (SDM)
- Spinal Muscular Atrophy (SMA)
- Weaver (W)

ouror (11)		Number of		
	carriers			
	Α	11		
	SDM	16		
	SMA	78		
	W	77		

Aim

To estimate lethal allele frequencies in reference populations using 3 different methods.

Method 1. Gene counting (Deterministic method) (Lidauer and Essl., 1994)

Method 2. Probability of gene origin (Deterministic method) (Man et al., 2007)

Method 3. Adaptation of gene dropping approach (stochastic method)

- Method 1. Gene counting
 - * Proposed by Allaire et al., 1982
 - * Summarize gene frequencies in known ancestral genotypes weighted by the probability that these genes are transmitted to the individual
 - * Six generations from carrier to the reference population are considered (Lidauer and Essl., 1994)

Method 1. Gene counting

Method 2. Probability of gene origin

- * Proposed by Man et al., 2007
- * Marginal/total gene contribution (Boichard *et al.*, 1997)
- * Expected lethal allele freq.
 - 1 carrier $\longrightarrow \frac{1}{2}$ Total gene contribution > 1 carrier $\longrightarrow \frac{1}{2} \Sigma$ Marginal gene contribution

Method 2. Probability of gene origin

Carrier: sire or grandsire

7

Method 3. Adaptation of gene Official o

- * Proposed by MacCluer et al., 1986
- * Principles
 - 1. Each carrier has one normal and one lethal allele
 - 2. Lethal alleles are flagged
 - 3. Alleles are dropped through a pedigree
 - 4. 50:50 transmission probabilities, no mutation
 - 5. Avoid overestimation
 - if a descendent inherited 2 lethal alleles, the gene dropping procedure is repeated.

Method 3. Adaptation of gene dropping approach

1 runs = 2/20 = 0.101,000 runs = 0.1625

Result (1) Comparison of allele

 \bigcirc

frequencies

Diseases	Ref.	Gene counting	Probability of gene origin	Gene dropping
Α	2001	1.08	2.24	2.11
	2005/6	0.93	2.44	2.32
SDM	2001	4.88	7.46	7.03
	2005/6	5.58	8.95	8.32
SMA	2001	5.80	9.48	8.94
	2005/6	6.49	11.03	10.24
W	2001	3.75	5.77	5.51
	2005/6	2.84	4.58	4.44

58th Annual Meeting of the European Association for Animal Production, Dublin Ireland, August 26th-29th, 2007

Result (1) Comparison of allele

 \bigcirc

frequencies

Diseases	Ref.	Gene counting	Probability of dene origin	Gene dropping
Α	2001	1.08	2.24	2.11
	2005/6	0.93	2.44	2.32
SDM	2001	4.88	7.46	7.03
	2005/6	5.58	8.95	8.32
SMA	2001	5.80	9.48	8.94
	2005/6	6.49	11.03	10.24
W	2001	3.75	5.77	5.51
	2005/6	2.84	4.58	4.44

58th Annual Meeting of the European Association for Animal Production, Dublin Ireland, August 26th-29th, 2007

Result (1) Comparison of allele

0

frequencies

Disease	Ref.	Gene counting	Probability of gene origin	Gene dropping
Α	2001	1.08	2.24	2.11
	2005/6	0.93	2.44	2.32
SDM	2001	4.88	7.46	7.03
	2005/6	5.58	8.95	8.32
SMA	2001	5.80	9.48	8.94
	2005/6	6.49 [•]	11.03	10.24
W	2001	3.75 <mark>1</mark>	5.77 <u> </u>	5.51 <mark>_</mark>
	2005/6	2.84	4.58	4.44

58th Annual Meeting of the European Association for Animal Production, Dublin Ireland, August 26th-29th, 2007

Result (2) SD & 95% CI

 \bigcirc

(Gene dropping)

Diseases	Ref.	Mean	SD	95% CI
Α	2001	2.11	1.02	0.67 – 4.63
	2005/6	2.32	1.49	0.46 – 5.60
SDM	2001	7.03	1.77	3.86 – 10.61
	2005/6	8.32	2.37	4.30 – 13.17
SMA	2001	8.94	1.76	6.19 – 12.96
	2005/6	10.24	2.19	6.64 – 15.03
W	2001	5.51	1.31	3.51 – 8.61
	2005/6	4.44	1.34	2.36 – 7.54

Summary

- 1. Gene counting → lower estimates
- 2. Results of adapted gene dropping approach are similar to results for probability of gene origin.
- 3. Adaptation of gene dropping

- Distribution

- SD, 95% CI
- 4. Large complex pedigree

Thank you for your attention

