Fine Mapping of QTL for Mastitis Resistance on BTA11 in Three Nordic Red Cattle Breeds

G. Sahana¹, M.S. Lund¹, L. Andersson-Eklund², N. Schulman³, S. Viitala³, T. Iso-Touru³, S. Värv⁴, H. Viinalass⁴ & J. Vilkki³

¹Genetics and Biotechnology, Faculty of Agricultural Sciences, AAU, 8830 Tjele, Denmark ²Department of Animal Breeding and Genetics, SLU, S-75007 Uppsala, Sweden ³MTT, Agrifood Research Finland, Biotechnology and Food Research, FIN-31600 Jokioinen, Finland ⁴Institute of Veterinary Medicine and Animal Sciences, EMU, Kreutzwaldi 64, Tartu 51014, Estonia

Funded partly by EC FP5 project MASTITIS RESISTANCE (QLK5-CT-2002-01186)

AARHUS UNIVERSITET

Faculty of Agricultural Sciences

Clinical mastitis

- Difficult to obtain genetic progress by traditional breeding
 - Low heritability
 - Difficult to record
 - Undesired genetic correlation with production
- Mastitis is a prime candidate for marker assisted selection (MAS)

Somatic cell score (SCS)

- SCS is an indicator trait for clinical mastitis
 - Highly correlated
 - Easy to record and routinely recorded
- QTL so far mostly reported for SCS
 - Not known if the QTL affects clinical mastitis
- Reports are mostly within family study
 - Limiting population level selection

Objective

 To fine map the QTL on BTA11 affecting clinical mastitis and SCS using combined LD/LA analysis

Populations and traits

Animal

- Finnish Ayrshire (8 GS)
- Swedish Red and White (5 GS)
- Danish Red (1 GS)
- Total no. of sons 524 (23-83)
- Traits
 - Clinical mastitis (CM)
 - Somatic cell score (SCS)

BTA11 linkage map

- Total 37 markers were genotyped on BTA11
 - Concentrated in 2 selected regions
- Markers order and map distances
 - CRIMAP 2.4
 - Ensembl genome sequence
 - RH map
- Linkage map
 - 85.2 cM

PETIT IN ARCHINDIS-SIGN

Model

$y = \mu + Zu + Wh + e$

- y vector of phenotypes
- µ overall trait mean
- Z and W incidence matrices
- u polygenic effect
- h random haplotypes effect
- e random sampling error

Clinical mastitis (FA)

Clinical mastitis with 4-marker haplotype (FA)

SCS (FA)

SCS (SRB)

Across breed analyses

Finnish Ayrshire

Swedish Red and White

Danish Red

 FA, SRB and DR are distinct breeds but have historic and recent genetic connection

Clinical mastitis (combined)

SCS (combined)

Multi trait – pleiotropic QTL

Multi trait analyses

Multi trait analyses (combined)

Model	LRT		QTL _{SCS}
		(cM)	(cM)
MTL	26.1	14.2	61.6
MT _P	24.1	62.5	62.5
MT _{CM}	7.1	62.5	
MT _{SCS}	21.2		61.6

Conclusions

- QTL affecting clinical mastitis is segregating on BTA11 in FA
 - The LD/LA analysis fine mapped the QTL
- QTL affecting SCS is segregating in both FA and SRB
 - But could not be fine map due to lack of LD between markers and QTL