

Faculty of Agriculture and Nutritional Science

CAU

Christian-Albrechts-University of Kiel Institute of Animal Breeding and Husbandry

Need for sharp phenotypes in QTL detection for calving traits in dairy cattle

Tino Seidenspinner¹ Jörn Bennewitz^{1,3} Fritz Reinhardt² Georg Thaller¹

¹Institute of Animal Breeding and Husbandry Christian-Albrechts-University of Kiel ²United Datasystems for Animal Production (VIT), Verden/Aller, Germany ³Norwegian University of Life Science, Aas, Norway

Introduction

- High incidence of stillbirth and dystocia (7% and 12%, respectively, LKV 2005) is a problem due to economic and animal welfare reasons.
- QTL mapping results published in literature up to now are only partly consistent.
- EBV used for QTL detection are often estimated in a multivariate setting across parities.
- Heterogenous information for specific calving traits in multivariate models

Aim of the study

Experiment I:

 QTL mapping in German Holsteins for the calving traits stillbirth and dystocia in first and second parity, based on univariately estimated DYDs

Experiment II:

- Genome scan with deregressed proofs derived from EBV obtained from routine breeding value estimation across parities
- Similar to Kühn *et al.* (2003) using actual phenotypes

Phenotypes experiment I

Requirements for observations to be included in analysis of experiment I:

- at least five calvings per herd
- at least 30 observations (daughters) per sire

Parity specific DYDs obtained from EBV, estimated univariately and separately for first and second parity

- estimated via sire model
- without pedigree information

Model for BV estimation

$$y_{ijklmn} = H^*Y_i + CM_j + CS_k + AC_l + S_m + e_{ijklmn}$$

Fixed effects:

- H*Y: herd by year
- CM: calving month
- CS: calving saison
- AC: age of calving

Random effects:

- s: effect of the sire
- e: residuals

BV estimated with an assumed heritability of 0.05 for all traits

Phenotypes experiment II

Deregressed EBV:

- Estimated simultanously via BLUP animal model in a multivariate setting
- Routine breeding value estimation in Germany
- DYDs not available
- Genetic parameters:

trait	h²	W	gen. corr. direct/maternal
dystocia	0.05	0.15	- 0.1
stillbirth	0.05	0.15	- 0.1

Pedigree and marker data

Pedigree:

- GDD consisting of 18 half-sib families (Thomsen et al. 2001)
- Second parity/all parities: 1237 progeny tested bulls
- First parity: 473 progeny tested bulls

Marker data:

- Obtained from previous analysis project (ADR I)

QTL analysis

- Univariate weighted multimarker regression (Knott *et al.* 1996)
- Permutation test with 10000 permutations
- Software: BIGMAP, ADRQLT (Reinsch 1999)
- False discovery techniques (Storey et al. 2002)

Results experiment I and II

QTL that show a chromosomewise error probability $p_c \le 0.05$

	Experiment I		Experiment II
Chromosome	First parity	Second parity	All parities
4			DYS _m , STI _d
7	STI _m		
10	DYS _m	STIm	
16		STId	
17	STI _m	DYSd	DYS _m
18		DYS _d , STI _m	STI _d ,STI _m
23	DYS _m		
27			DYS _d
XY	DYS _d		

STI_m, stillbirth maternal; STI_d, stillbirth direct; DYS_m dystocia maternal; DYS_d, dystocia direct

Results

Chromosomewise error probability $p_c \le 0.10$

- 19 significant QTL for calving traits in first parity, 13 significant QTL in second parity and 15 significant QTL for the combined phenotypes
- Some QTL mapped for first parity are not found for second parity and vice versa.
- QTL mapped with DYDs and deregressed EBV only partly consistent
- Some chromosomes showed QTL for several traits.

Stillbirth maternal BTA7

Chromosomewise error probability

—, the expectation of the density under the assumption of all null hypotheses being true; --- , true null hypotheses estimated with the false discovery rate

Discussion

Stillbirth maternal BTA18

Dystocia maternal BTA10

Discussion

 Calving traits in first and second parities have different genetic background

 \rightarrow indicated by Philipsson (1996) and Harbers *et al.* (2000)

- Results published in literature only partly comparable, due to
 - different trait definition
 - different phenotypes
 - different populations except Kühn et al. (2003)
- Different data collecting systems for dystocia and stillbirth
- Different progeny testing schemes (in some countries testbulls also mated with heifers)

Discussion

- Mating of testbulls with heifers
 - \rightarrow more accurate phenotypes for QTL mapping
- Distinction of calving traits in parities for QTL mapping and progeny testing
- Improvements for data collecting for dystocia and stillbirth (subjective evaluation, high number of unreported cases)

Conclusions

More accurate and sharper phenotypes for

breeding value estimation and QTL mapping

lead to a higher power of mapping of trait specific

QTL. These sharp phenotypes should be used in

subsequent studies.

Thank you for your attention!

Many thanks to the German Cattle Breeders Federation for permission to use the ADR-GDD and to the German Research Foundation for financial support!