Ruminal fermentation and in sacco NDF degradability in growing bull calves fed different starch levels and two types of roughage

K.F. Jørgensen, N.B. Kristensen, M.R. Weisbjerg, O. Højberg, P. Nørgaard* & <u>M. Vestergaard</u>

Institute of Animal Health, Welfare and Nutrition, Foulum,
University of Aarhus, Denmark
*Department of Basic Animal and Veterinary Sciences,
University of Copenhagen, Denmark

Introduction (I)

- In Denmark, dairy breed bull calves are utilized for rose' veal production
- -Calves are bought from dairy farms at 2-4 weeks old
- Fed milk, concentrate and straw/hay until week 6-8 of age and weaned
- Fed high starch concentrate ad libitum and barley straw as only roughage
- Premium payment (+50 to 60 cent/kg carcass) is received when calves are:
 - Less than 10 months
 - Carcass weight: 160-200 kg (in practice > 185 kg to get EU male premium)
 - EUROP conformation: > 3.3

Introduction (II)

- Calves grow > 1250 g/day from 2 weeks to slaughter (>1350 g/day in some herds)
- There is a risk of subacute acidosis in such intensively-fed bull calves
- Bloat, rumen parakeratosis, large fluctuations in daily intake, and liver abscesses can develop
- On average 12% liver abscesses in this type of production
- There is a need for finding feeding regimes that reduce these risks but still keep daily gain high

Objective

- Investigate how:
 - Changed composition of the concentrate (i.e. less starch an more fiber (NDF))
 - Roughage type (Grass hay vs. Barley straw)
- will affect:
 - Rumen fermentation (pH and VFA)
 - In sacco NDF degradability
- in growing bull calves

Material and Methods

Animals and Design

- 6 ruminally fistulated calves (initial BW 120 ± 3 kg)
- were randomly assigned to one of 4 treatments in a balanced incomplete 2 x 2 factorial experiment with 4 consecutive periods

Treatments:

- Low starch (LS) or high starch (HS) concentrate
- Barley straw (BS) or grass hay (GH) as roughage
- Concentrate and roughage were offered ad libitum and separately

Calf#	Period 1	Period 2	Period 3	Period 4
5418	HS-BS	HS-GH	LS-GH	LS-BS
5421	LS-BS	HS-BS	HS-GH	LS-GH
5425	HS-GH	LS-GH	LS-BS	HS-BS
5426	LS-GH	LS-BS	HS-BS	HS-GH
5433	HS-GH	LS-GH	LS-BS	HS-BS
5442	LS-BS	HS-BS	HS-GH	LS-GH

Periods were 21 days (14 d for adaptation + 7 d for measurements and sampling

Composition of concentrates

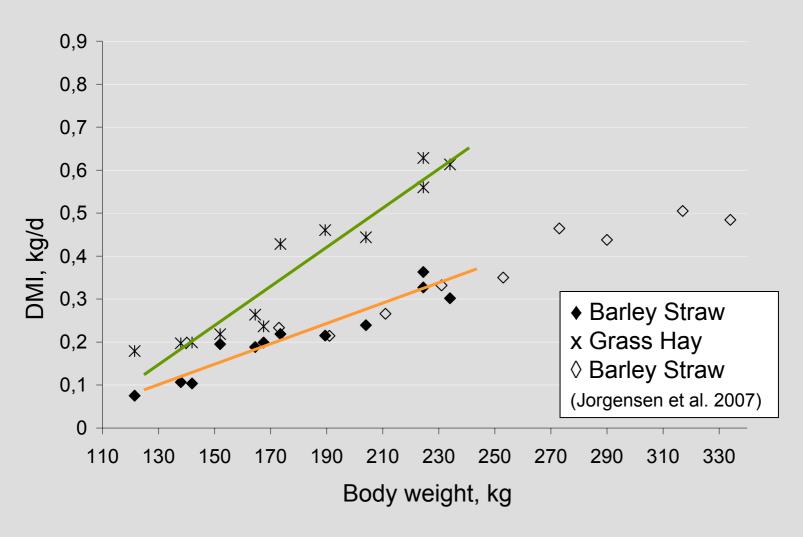
% of DM	LS	HS	
Wheat	20.5	30.5	
Barley	20.5	30.5	
Soybean meal	21.5	24.7	
Dried sugar beet pulp	18.6	5.3	
Grass pellets, plus¹	10.5	-	
Sugar beet molasses	2.6	2.6	
Rape seed oil	2.3	2.3	
Mineral-Vitamin ²	3.2	3.0	
Limestone	0.3	1.1	
DM %	88.9	89.1	
Starch, % of DM	28.0	40.2	
NDF, % of DM	19.8	14.1	
DE, MJ per kg DM	15.5	15.7	

Nutritive value of roughages

% of DM	BS	GH
Feed analysis		
DM %	85.0	90.0
Starch, % of DM	-	-
NDF, % of DM	82.8	53.8
DE, MJ per kg DM	8.2	12.8

RESULTS

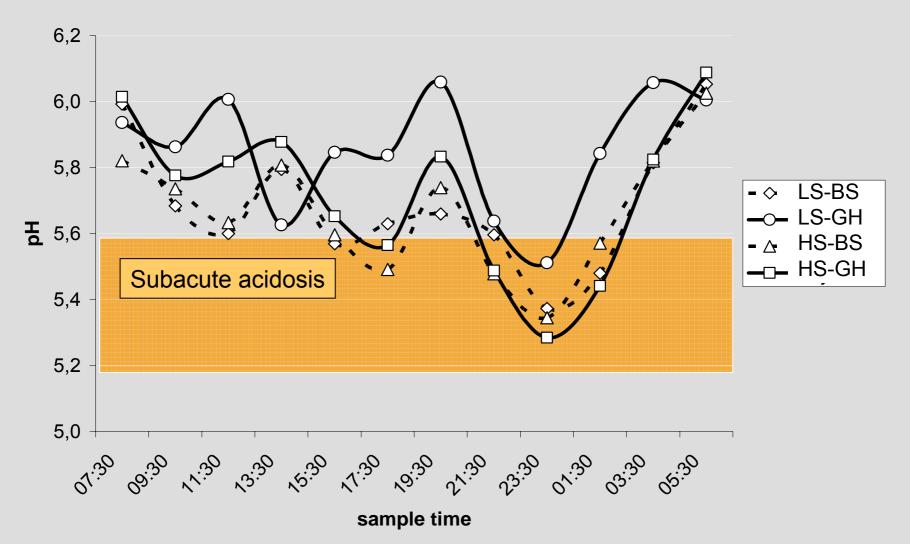
Across all periods, overall ADG was 1,230 ± 100 g and was not affected by treatment



		Treatments			
Item	LS-BS	LS-GH	HS-BS	HS- GH	
DMI per day					
Concentrate, kg	5.10	5.13	5.18	5.43	
Roughage, kg	0.24	0.42	0.18	0.33	
Total, kg	5.32	5.54	5.36	5.75	

Feed intake (DMI) of Grass Hay (GH) was higher than of Barley Straw (BS)

	Treatments			
Item	L5-BS	LS-GH	HS-BS	HS-GH
DMI/d				
NDF, gram/d	1203	1240	877	946
NDF rough, gram/d	200	224	150	178
Starch, gram/d	1427	1433	2093	2177

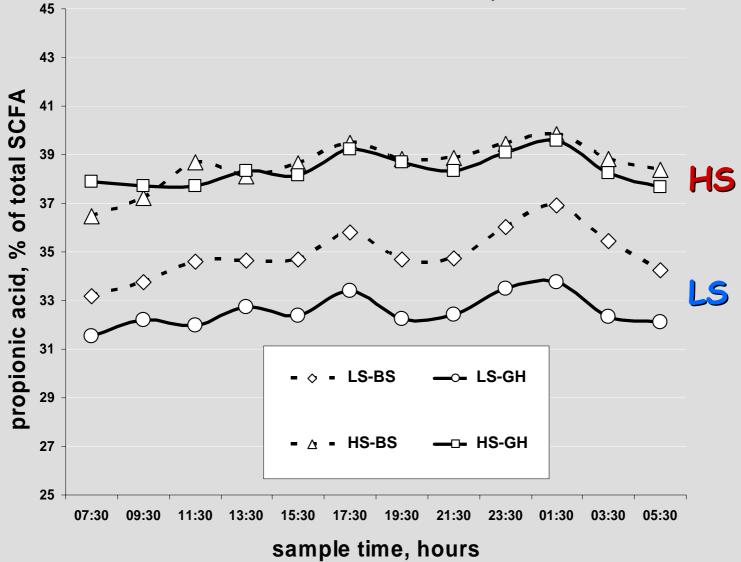

GH vs. B5 increased ruminal pH and decreased hours/d with pH < 5.8

	Treatment			
Item	LS-BS	LS- GH	HS-BS	HS- GH
Average pH ³	5.69	5.85	5.67	5.72
Hours/d with pH<5.8	16.9	12.4	17.1	13.6
Hours/d with pH<5.6	12.0	8.0	11.7	11.3
Minimum pH*	5.32ª	5.36ª	5.28a	5.20 ^b

GH vs. B5 increased ruminal pH and decreased hours/d with pH < 5.8

LS vs. HS concentrate only tended to increase ruminal pH

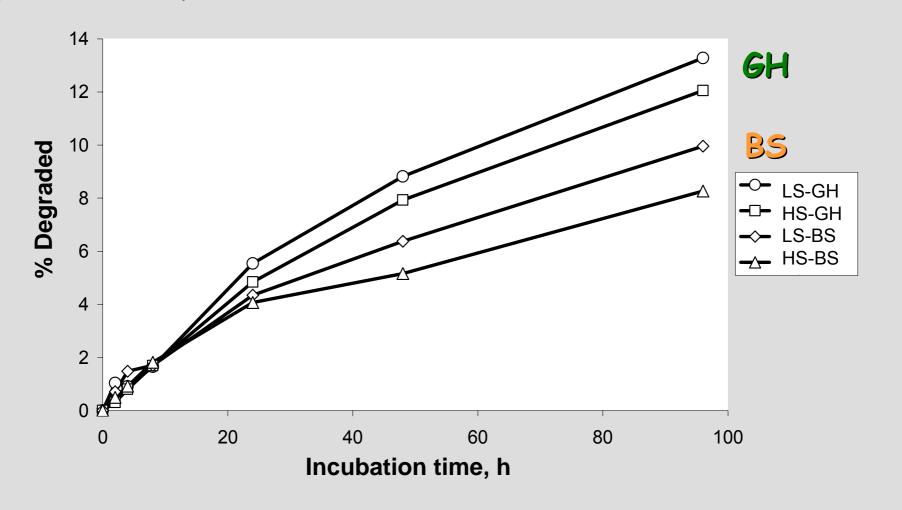
(5.77 vs. 5.70, P< 0.10)



The proportion of C2 and C4 was higher and that of C3 lower with L5 vs. HS concentrate

	Treatment				
Item	LS-BS	LS-GH	HS -BS	HS-GH	
Total VFA, mM	148	148	156	155	
VFA, percentage	Total VFA was high compared with dairy cows!				
Acetate	5 3.0	55.0	50.4	49.4	
Propionate	34.9	32.6	38.6	38.4	
Butyrate	8.3	8.6	7.4	7.7	

Propionic acid (C3) proportion of VFA in rumen fluid over a 24 h period


Total VFA conc. and content of individual VFA (C2, C3 and C4) was unaffected by roughage type

Rumination

 Time spent ruminating was 235 ± 28 min/d and 48 ± 10 min/kg DM with no effect of treatment

Feeding GH vs. BS improved in sacco NDF degradation of barley straw and grass hay

Feeding L5 vs. HS concentrate improved in sacco NDF degradation of barley straw

Conclusion

- Changing the concentrate composition towards 33% more cell-walls and 33% less starch:
 - Increased rumen pH less than expected
 - Increased C3 and reduced C2 and C4 (VFA)
- Feeding grass hay vs. straw will improve NDF degradation of roughages
- Giving intensively-fed bull calves access to grass hay instead of barley straw will improve the rumen environment