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Abstract

I recently developed (8% wgalp) how to choose genetic markers to infer
kinship or inbreeding coefficients. The first draft of the horse genome
sequence has now been deposited in public databases and is freely available
for use. In addition to sequencing the horse genome a map was produced
which should comprise one million of SNPs. We will show in this paper how
it could be used to estimate kinship and inbreeding coefficients
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Introduction

In horse populations, there is a great concern for pedigree. Most stud-books
started during the 19% century and some of them even earlier. This
administration work was done very carefully as it was done for humans with
parish register. This, however, did not exclude some errors (Cunningham et
al. 2001, Kavar et al. 2002) which justified the use of genetic markers in
routine procedure as early as the 1970s. Now genetic markers are
systematically used for breeds such as the Arab, Thoroughbred and Trotter
and commonly used for the others when artificial insemination is used or at
random to discourage fraud. The result is a very low percentage of parentage
errors in horse breeding. Genetic markers in this breeding are used only for
exclusion procedures to assess the right sire and dam of the foal. Categorical
allocation to select the most likely parent from a foal of non-excluded
parents is not practised for forensic reasons. However as shown by Langlois
(2005), pedigree information is limited because the total genetic history of an
animal or a population cannot be traced from the beginning. Even with very
complete and reliable pedigrees (Zechner et al. 2002), there are still events in
the past that are not described like bottlenecks or the real number of
founders (Mahon and Cunningham 1982, Mac Cluer et al. 1983, Cothran et
al. 1984, Moureaux et al. 1996). We recently developed (Langlois 2006) how
to choose genetic markers to infer kinship or inbreeding coefficients. We
show the advantages of a panel of numerous independents SNPs which
alleles frequencies are balanced (i.e. not far from p=0.5) to infer kinship and
inbreeding which is quite different as to exclude (Jamieson and Taylor,
1997). In this paper we will develop among many others (Oliehoek et al.



2006) the formulae of estimating the kinship and the inbreeding coefficient
in the bi allelic case corresponding to the SNPs which have also the
advantage of being co dominant and null allele free. The reason of this paper
is that the first draft of the horse genome sequence has now been deposited
in public data bases and is freely available for use. The realisation of DNA
ships for several hundred of SNPs optimally chosen to trace the parentage is
therefore available.

Let us remind the methodology:

We must go back to Malecot (1948) to define the two concepts that makes
two alleles at the same locus alike. They are either “identical by descent”
(IBD) or “alike in state” (AIS). He wrote therefore the probability s; of being
homozygous for allele i equals the probability of being IBD defined as the
inbreeding coefficient f multiplied by the probability of drawing the i allele,
plus the probability (1-f) of not being IBD multiplied by the probability of
drawing at random twice the same allele (probability of being AIS)

sii = fpi + (1-f)ps? (1)

The probability sj of being heterozygous for alleles i and j or j and i
sij = (1-f) 2pip; (2)

where p; is the frequency of allele i (resp. j)
Let us add and subtract pi(1-pi) to si

si = fpi + (1-0p? + pi(1-p) - pi(1-p)

We get after some simplification an expression which looks symmetrical to
that of sy :

sii = (1+1) pi(1-pi) [1 + —=---mm-mmm- ] (1bis)

Indeed, because of bi allelism p; = 1-p;i and,

sij= (1-f) pi(1-pi) [2] (2bis)

Let us write the likelihood L of an individual for m independent loci. It is the

product of the likelihood for each locus:

k
L = IT (1+) pi(1-py) {1 + ----omrmmemoee }x I (1-0) 2pi(1-py) (3)
1=1 (1-p) (1+)  1=1



k loci being homozygous and j loci being heterozygous for the individual with
f coefficient of inbreeding.p: is the frequency of the homozygous allele and
(1-py) that of the other allele at the locus L.

k pi(2p1-1) J
L = (1+Hk x IT [pi(1-p1) +----------==-=- ) x (1-f) T 2 pi(1-p1)
1=1 (1+) 1=1

k pi2pi-1)
Log L =k Log (1+f) + £ Log [pl-py) + -----==----- 1
I=1 (1+f)
J
+jLog(1-f) +Z Log 2pi(1-pi)
I=1

and derivative of Log L with respect of f

d Log L 1 k dLogm k dLog [p1 + (1-pf]/(1+) 1
------------- =K eom b T e R B e L e
df (1+f) 1=1 df 1=1 df (1-f)

because the derivative of the sum is the sum of the derivatives.
Let us remark thatd Logpi / d f=0
And because

p1 + (1-pyf

(1+f)
Is quite heavy to develop with these notations, let us for simplification write
more scholarly:

a+ (l-a)x
y = Log --------------mm -
(1+x)
u’ a+ (l-a)x
y = --- with u = ----—--=mmmmmm -
u 1+x
(I-a)(1+x) - [a + (1-a)x]
u,.— ___________________________________________
(1+x)?
(1-a)(1 +x-x) - a
u’__. ___________________________________________
(1+x)?
(1-2a)
u’: ____________________________________________
(1+x)



d Log L 1 k (1-2p) 1
———————— =Ko F D e o e (4)
df (1-+1f) I=1 (1+4f) [p1 + (1-pi)f] (1-9)
which is zero when:
k (2pi-1)
(1) {Z (1 mmmmmmees ) b= (14 (5)

Defining S; = 1 for homozygous and S; = O for heterozygous for the m = k +j
loci, we have:

m (2p1 -1) m
1-H{ZS:1(1----mmmmmmmm )} = (1+1) Z (1-S)) (Sbhis)
1=1 pl + (1-ph)f 1=1
By definition of C and D,
(I-)C = (1+)D
and
C-D
f= oo
C+D

This weight is one when p1 = 0.5. Therefore when p1 = 0.5 for every i,
f=(k-j)/m

which is a very simple estimator, which also does not need any prior
assumptions on f and no iterative resolution.

In this problem, this kind of bi allelic markers with p1 # 0.5 are particularly
worth full.

Let us now consider the estimation of @, the relationship coefficient between
two individuals. It is the inbreeding coefficient of their virtual offspring. Four
main situations have to be considered according to the probability of
producing a homozygous offspring:



-1- The two individuals are homozygous for the same allele which frequency
is p1. They will produce with probability 1 a homozygous offspring for this
allele: S1 = 1 for alleles p or g=(1-p) and (1-S;1) = 0.

-2- The two individuals are homozygous for two different alleles: they will
never produce a homozygous: Sz = 0 and (1-Sp) = 1.

-3- One individual is homozygous for the allele with frequency pi, the other is
heterozygous. They should produce a half homozygous and a half
heterozygous. Sz = ' for alleles p or q.

-4- The two individuals are heterozygous, they will produce a half of
homozygous S4 = % from which S, = % for allele p and an other S4p = % for
the other allele q.

Replacing f by ® and S by the corresponding values for each loci (i.e. S1 =1 ;
So = 0; S3 = Y% ; S4 = Saa + Sap with Ssa = Sap = Y%, according to the situation of
identity of the two individuals in equation (5bis) when using adequate alleles
frequencies will lead to the estimation of @ instead of f. That is:

C-D m (2p1-1) m
O with C=X S;(1----------mm- ) andD=Z (1-9S)
C+D =1 pi+(1-p)@ =1

Considering that from the m loci m1 are in situation 1(two homozygous
individuals for the same allele), m2 are in situation 2 (two homozygous
individuals for different alleles), m3s are in situation 3 (one individual
homozygous, the other heterozygous), m4 are in situation 4 (two
heterozygous individuals).

mi 2p1— 1 ma3 2p1-1
C=2% (1---mmmmmmmes J+Z 1/2 (1 - -mmmmmmmeeeeeee
=1 prt(1-p) @ =1 pt+ (1-p) @
ms 2p -1 2qr-1
+Z {1/4(1 - ------mmmmm- I A (e )}
=1 p1 = (1-p)® q + (1-q)@

and what ever pi1, q1 and @,

D =mi + %2 (m3 + ma

If as recommended p1 # qi # 0.5
C=m; + % (m3+ m4)

Gives:

® = (m1 - mp)/m

a very simple estimator of @



CONCLUSION

From the above studies, it can be concluded that parentage analysis needs a
lot of markers to reach a reasonably good precision in practice. We propose
the realisation of an SNP kit. This kind of marker has the advantage of being
easily revealed by DNA chips, being bi-allelic, co-dominant and null allele
free. In addition, it is thought that an SNP can be found in mammals every
500 to 1000 pairs of bases. Micro-satellites are expected only every 25 to 100
kilo-bases. The screening of the horse genome would therefore be much
more precise with SNP than with micro-satellites. It is also known that the
mammal genome is approximately constituted of 60 segments of 50
centimorgans. Sixty independent markers at a bare minimum can therefore
be expected and 120 at the maximum when independence is strictly
respected. Some slight dependence when accepted (Slate et al. 2004) could
easily lead to a panel of more than 300 markers that could be efficient in
parentage analysis (Fernandez et al. 2005). Due to their potential great
number and their revelation facilities (positive or negative responses on DNA
chips) allowing to squeeze sequencing for routine analysis, SNP markers
allow the consideration of the tracing of parentage. The realisation of a kit of
several hundreds of SNP would allow precise estimation of allele frequencies
and a choice of 100-120 independent loci in order to trace the parentage as
seen before. This could be a goal leading to a better mastering of the real
parentage between individuals at the end. For small populations the
question of the evolution of inbreeding should also be better faced than
currently by only taking pedigrees into account. The realisation of such a
tool is only a problem of engineering and financing and not a question of
know-how. In my opinion, the future of genomics in horse breeding will
depend on the solution of this political problem. I treated here only one part
of the whole problem. But this part appears sufficient to justify the
approach.
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