

Parameters of AI boars and predicted correlated responses of selection against boar taint

Rob Bergsma, Egbert Knol & Hanneke Feitsma

58th EAAP Dublin August 26th - 29th 2007

Introduction

- Genetic parameters for semen production traits are not often estimated:
 - not of interest for direct selection, only culling
 - Al responsible for only 3% cost price of piglet
 - availability of data
- Nevertheless useful:
 - production efficiency, especially repeatability
 - correlated response (boar taint)

Outline

- Semen production traits
 - Data collection
 - Material description
 - (genetic) Parameters
- Boar taint
 - Genetic parameters
- Genetic correlations

Material semen production

- Data on ejaculates of 4 Al centre's, represented by "Dutch Association of Cooperative Pig Al Centres"
- 1 TOPIGS sire line
- 56,548 ejaculates of 805 ♂♂
 (70 ejaculates / ♂)
- Ejaculates from November 2002 June 2007
- ASReml 2.00 (Gilmour et al., 2002)

Trait	n	\overline{x}	σ	min.	max.
Volume (ml)	54,450	253	85	1	610
Concentration (10 ⁶ /ml)	54,328	340	141	36	1,188
Production (10 ⁹ /ejaculate)	54,254	81	32	0	303
Motility (fresh)	53,503	7.41	0.70	1.0	9.55
Semen longevity (Δ motility)	31,484	-0.50	0.75	-7.0	1.0

Other traits of important

Trait e	\overline{x}
Volume (ml)	253
Concentration (10 ⁶ /ml)	340
Production (10 ⁹ /ejaculate)	81
Motility (fresh)	7.41
Semen longevity (Δ motility)	-0.50

	\overline{x}	min	max.
Age at mounting (months)	21.2	8	59
Mounting interval (days)	5.8	0	57
Semen examination interval (hours)	52.5	11	168

Genetic parameters semen production traits

	h ²	r ²	
Volume (ml)	0.17 ± 0.04	0.35 ± 0.02	
Concentration (10 ⁶ /ml)	0.26 ± 0.04	0.42 ± 0.02	
Production (10 ⁹ /ejaculate)	0.17 ± 0.04	0.34 ± 0.02	
Motility (fresh)	0.20 ± 0.05	0.44 ± 0.02	
Semen longevity (Δ motility)	0.04 ± 0.01	0.10 ± 0.01	

Conclusions on semen production

- The knowledge on repeatability of semen production characteristics (c)(sh)ould be used to optimize semen production at AI facilities
- Demonstrates usefulness of consequent data collection
- Genetic parameters found are in general lower compared to review of Ford et al. (Genetic Variation in Sperm Production, ICPR 2005, Rolduc)

- 1,369 boars (half-sibs) from 45 fathers
- TOPIGS boar line from one farm
- Slaughtered at 124 ±12 kg live weight
- Fat samples from neck region for levels of androstenone, skatole and indole
- Determination of skatole and indole by HPLC (method of CCL Nutricontrol)
- Determination of androstenone by ELISA (method of Andresen and Dahl)
- Log-transformation of data

Boar taint characteristics

Trait	n	\overline{x}	σ	min.	max.
Androstenon μg.g-1	1,340	1.57	1.39	0	10.1
Skatol µg.kg-1	1,351	75	81	6	928
Indol μg.kg ⁻¹	1,348	50	56	8	678

Heritabilities and genetic correlations for boar taint

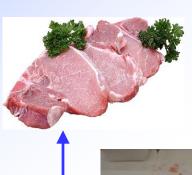
	Ln(and)	Ln(ska)	Ln(ind)
Ln(androstenon)	0.75 ± 0.09	0.43 ± 0.12	0.52 ± 0.12
Ln(skatol)		0.44 ± 0.08	0.81 ± 0.07
Ln(indol)			0.32 ± 0.07

Genetic correlations semen production traits and boar taint

	Volume	Concentr.	Production	Motility	Longevity
Androst.	0.18 ± 0.20	-0.22 ± 0.18	-0.27 ± 0.20	0.32 ± 0.20	0.11 ± 0.24
Skatol	0.21 ± 0.21	0.01 ± 0.19	0.22 ± 0.21	-0.44 ± 0.21	-0.85 ± 0.21
Indol	0.24 ± 0.22	-0.19 ± 0.21	-0.08 ± 0.23	-0.15 ± 0.25	-0.49 ± 0.27

Conclusions

- Heritabilities show ample opportunities for selection against androstenon, skatol and indol
- High standard errors on genetic correlations due to lacking common observations
- The impact of selection against boar taint on male fertility characteristics will not be very high, since genetic correlations were low or even positive



Any questions?

