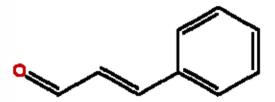
Agriculture et Agroalimentaire Canada

Agriculture and Agri-Food Canada

Dose response of cinnamaldehyde on lamb performance and carcass characteristics

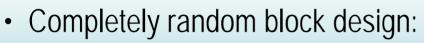
Alex Chaves et al.

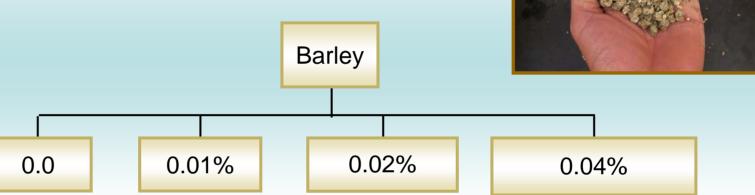
Free communications on Sheep and
Goat Production 27-08-2007, 15.30 - 15.45
Abstract # 509


Feed antibiotics vs. Europeans' demand

- Use of antibiotics are
 "banned" in EU in 2006
- Must address this change
- Are there alternatives?

Plant extracts: "essential oils"


Cinnamaldehyde is the active ingredient in the spice cinnamon



- Marketing our lambs for flavour meat without antibiotics
- So the question would be:
 - can plant extracts replace antibiotics / ionophores in lamb rations?

to promote animal growth

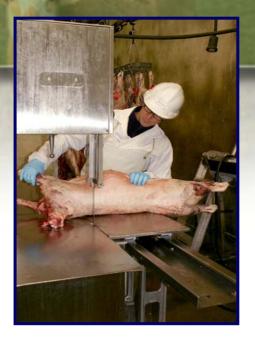
Trial design

- 48 healthy ram lambs (20 \pm 0.5 kg LW)
- Based on average lamb intake of 1500 g, these doses would equal receiving 0 (Control); 0.01% = 150 mg; 0.02% = 300 mg; 0.04% = 600 mg CDH per lamb per day
- iso-nitrogenous and iso-energetic pelleted diets

DM and diets chemical composition

Dry matter (DM, g 100-1)	90.3
Crude protein	14.5
Non-fibre CHO	41.9
Lipid	3.8
Fibre (NDF)	30.4
Ash	9.4
ME (Mcal kg ⁻¹ DM)	1.9

Happy lamb environment



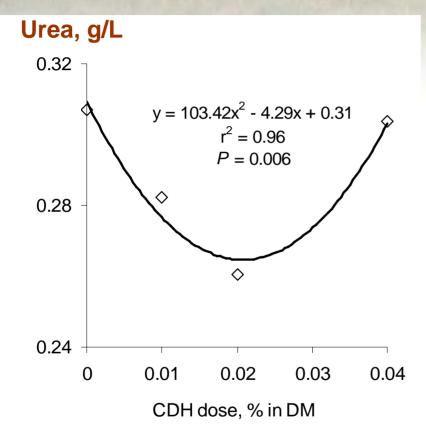
Measurements

- Intake was measured daily on an individual basis
- Lambs were weighed weekly and slaughtered \approx 45 kg LW
- Liver and rumen were weighed at slaughter
- Rumen samples were taken at slaughter for NH₃, pH, VFA and DNA analysis (data not presented)
- Every 2 weeks: blood samples in all lambs: TRI, cholesterol, NEFA and BUN analyses

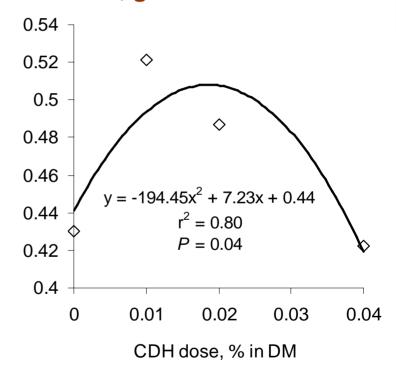
Measurements

- Saleable meat yield was determined by processing the lambs into primal cuts
- For each lamb, the two racks were vacuum packed and transported on ice to the Lacombe Research Centre for a taste panel evaluation (data not presented)

No differences in performance


	Cinnamaldehyde						
	0 (control)	0.01%	0.02%	0.04%	L or Q		
Initial LW, kg	20.2	20.5	19.5	21.5	ns		
Final LW, kg	42.6	42.8	43.3	42.7	ns		
ADG, g d ⁻¹	234	234	250	229	ns		
DMI, g d ⁻¹	1019	1021	1053	1038	ns		
FC, intake gain ⁻¹	4.4	4.4	4.2	4.5	ns		

Blood samples results


	Cinnamaldehyde (% DM)				Treat					
	0	0.01	0.02	0.04	SE	Treat	Week	x Week	L	Q
Blood urea N (BUN), g/L	0.31 ^a	0.28 ^{ab}	0.26 ^b	0.30 ^a	.013	0.05	0.13	ns	ns	0.01
Non-esterified fatty acids (NEFA), mEq/L	0.15	0.19	0.18	0.15	.018	ns	0.003	ns	ns	0.09
Cholesterol, g/L	0.43	0.52	0.49	0.42	.032	0.11	<.001	0.01	ns	0.04
Triglycerides, g/L	0.183	0.201	0.181	0.156	.014	ns	<.001	0003	0.08	ns

P <

Q effect

Cholesterol, g/L

Saleable meat yield (SMY)



Cinnamaldehyde	SMY, kg	SE
0% (Control)	16.1	0.61
0.01%	16.0	0.64
0.02%	16.0	0.68
0.04%	16.2	0.61

Primal cuts, rumen pH, liver

- No differences in meat primal cuts (P > 0.05)
- Rumen pH was similar among treatments at the slaughter (mean = 6.67 ± 0.095 ; P = 0.49)
- Livers and rumen of control diets did not differ than cinnamaldehyde diets:
 - liver wt mean = $782 \pm 28.9 \text{ g}; P > 0.66$
 - rumen wt mean = 4.8 ± 0.22 kg; P > 0.12

Conclusion

