

NSW DEPARTMENT OF PRIMARY INDUSTRIES

Partners in the profitable and sustainable development of agriculture, fisheries, forests and minerals in New South Wales

Predicting the composition of lamb carcases

Predicting the composition of lamb carcases

By David Hopkins, & Eric Ponnampalam*

NSW DPI, Centre for Sheep Meat Development, Cowra, New South Wales, Australia

*Animal Production Sciences Platform, Department of Primary Industries, Victoria, Australia

MEAT & LIVESTOCK

AUSTRALIA

Background

- Currently sheep for breeding in Australia are ultrasonically scanned to measure;
 - Fat depth over the 12th rib (Fat C). Muscle depth of the m. *longissimus* (loin) – EMD. EatC converted to CR
 - FatC converted to GR measures.

- The live animal measures are used to produce breeding values (BV's) – ASBV's.
- The BV's are combined into selection indices to aid breeders.

- These BV's have been shown to produce change in the carcases of progeny – e.g. selection for ↑ muscle depth ↑ carcase lean.
- However single site selection may lead to localised changes at the expense of all of carcase changes.
- Can selection be improved by using alternative measurement sites?

- A report in 1979 (Kirton & Johnson) suggested measurement in the rump region had potential.
- This site has been used in live cattle see Wolcott et al. 2001.

To establish whether a fat or muscle depth measure taken over the rump region could improve the accuracy and precision of compositional estimates in lamb carcases and;

Whether the use of multiple measurement sites would improve the discriminatory power for predicting carcase composition.

Design & Measures

- Measures on 312 lamb carcases were made for;
 - FatC, EMD, GR,
 - Rump muscle depth (RMD) & rump fat depth (RFD) - 30 mm distal to the lumbar-sacral junction.

 Each right side carcase was scanned using X-ray absorptiometry (DXA).

Design & Measures

Analysis

- Fat, lean and bone mineral %'s were predicted using the DXA based on human algorithms.
- Regression analysis was used to;
 - Develop models for the prediction of carcase lean and fat (%) from carcase measures.
 - Examine the relationship between measures of fat depth at different sites on the carcase.

Results

TABLE 1. Prediction models for lean composition (%) from carcase measures, hot carcase weight (HCW), fat measures (GR, Fat C, RFD) & muscle measures (EMD, EMA, RMD)

Model terms	R^2	r.s.d
85.4 – 0.07 HCW ^{n.s.} – 0.48 GR	48.3	1.89
85.2 – 0.15 HCW – 1.04 Fat C	48.7	1.87
85.9 – 0.18 HCW – 0.59 RFD	40.3	2.01
83.4 – 0.11 HCW – 0.49 GR + 0.10 EMD	49.2	1.87
83.6 – 0.19 HCW – 1.05 Fat C + 0.08 EMD	49.2	1.86
87.6 – 0.10 HCW – 0.65 RFD – 0.09 RMD	42.0	1.98
84.8 – 0.08 HCW – 0.82 Fat C – 0.33 RFD	51.7	1.81

- Current fat depth measure (Fat C) better than rump.
- Combing Fat C and EMD better than rump alternative.

- Multiple measures at different sites can increase accuracy, but not currently practical.
- Would require new genetic parameters.

Results

TABLE 2. Prediction models for GR (mm) from Fat C and RFD measures (mm) and hot carcase weight (HCW; kg)

Model terms	R^2	r.s.d
5.4 (± 0.34) + 1.74 (± 0.10) Fat C	51.9	2.40
-0.7 $(\pm 0.64)^{\text{n.s.}}$ + 6.66 (± 0.35) Fat C ^{0.5}	53.7	2.36
$-5.7 (\pm 0.78) + 0.40 (\pm 0.04)$ HCW + 4.57 (± 0.38) Fat C ^{0.5}	63.8	2.08
4.7 (± 0.41) + 1.16 (± 0.07) RFD	48.5	2.47
-2.5 (± 0.83) + 0.43 (± 0.04) HCW + 0.76 (± 0.07) RFD	60.3	2.17

- Conversion of Fat C measures to GR equivalents is not perfect.
- Conversion would less accurate if based on rump measures.
- Relationship is not linear.

Acknowledgements

- A large number of people from the following organisations (NSW DPI; University of New England; CSIRO; DPI, Victoria; Murdoch University; DAFWA; MSA).
- NSW DPI, Meat & Livestock Australia, Australian Sheep Industry Cooperative Research Centre & cooperating abattoir.