Estimation of Body Condition Score in Dairy Cattle Using Digital Images Session 21: Abstract 0827

J.M. Bewley, A.M. Peacock, O. Lewis, D.J. Roberts, M.P. Coffey, and M.M. Schutz

- Automated BCS could: – Require less time
- Be more objective
- Be less stressful on the animal
- Be more cost-effective

Introduction

- Digital imaging has been utilized in the swine industry to describe body traits.
- Previous researchers have explored digital imaging for BCS of dairy cows

(Coffey et al., 2003, Leroy et al., 2005, Pompe et al., 2005).

Materials and Methods

- Data were collected at the Scottish Agricultural College Crichton Royal Farm in Dumfries, Scotland, UK from September to November 2006
- Cows were scored weekly using the Mulvany et al. (UKBCS) and Ferguson et al. (USBCS) BCS systems.
- When a given BCS differed from preceding and subsequent scores by more than ± 0.25, the score was removed from the data set (N=129 and N=59 for UKBCS and USBCS, respectively.
- Means were 2.12 (±0.35) and 2.89 (±0.40) for the UKBCS (N=2346) and USBCS (N=2571), respectively.

Image Collection

- Images collected with a digital camera
- Camera triggered to capture image when gates closed
- Image timestamps matched with weigh station timestamps to ID cows
- Images only available during afternoon milking because of lighting

Anatomical Poi	nt Co	oordinates		
450 400 350 400 400 400 400 400 400	5 6 7	*8		
300 - 112 250 - 102 200 -		9 10 * 11 14 * 12 14 * 13		
$\begin{array}{c} 5 \\ 5 \\ 100 \\ 50 \\ 50 \\ 0 \\ 0 \\ 100 \\ 22 \\ 21 \\ 20 \\ 19 \\ 18 \\ 17 \\ 16 \\ 10 \\ 50 \\ 0 \\ 100 \\ 50 \\ 0 \\ 100 \\ 50 \\ 100 \\ 50 \\ 100 \\ 50 \\ 100 \\ 100 \\ 50 \\ 100$				
1 & 23 Foreribe	7 & 17	Hook Ends		
2 & 22 Short Rib Starts	8 & 16	Thurls		
3 & 21 Hook Starts	9 & 15	Pins		
4 & 20 Hook Anterior Midpoints	10 & 14	Tailhead Nadirs		
5 & 19 Hooks	11 & 13	Tailhead Junctions		

Data Editing

- For each image, 7 composite anatomical angles were calculated using the mean of opposing angles from the cow's left and right sides.
- A within image coefficient of variation (CV) was calculated for each pair of angles.
- When the CV corresponding to an individual image composite angle was more than 3 standard deviations from the population mean CV for that angle, the respective angle was discarded.

Data Editing

- A weekly average of each composite angle, along with tailhead angle, was calculated for each cow/week combination.
- Weeks were defined relative to the date of scoring for the respective BCS systems with the date of scoring in the middle of the week.
- Weekly averages with less than two composite hook angles were discarded from the data set prior to model creation.

Images

- If both hooks were not clearly visible, the image was considered to be of insufficient quality and no points were recorded.
- 3332 usable images remained in dataset.
- Usable images were available for 46 of 61 days.
- There were 72.44±42.91 usable images per day and 13.77±8.59 usable images per cow.
- Lighting (not enough contrast between cow and background) was biggest problem
- Cow position, tail, and dirt also presented difficulties.

Results

- Hooks were easiest to identify.
- Tailhead and pins were more difficult.
- Hook posterior angle (r=0.5239), hook angle (r=0.4834), and tailhead depression (r=0.3104) had strongest correlations with USBCS.
- The hook posterior angle (r=0.4601), hook angle (r=0.3301), hook anterior curvature (r=0.1984), and tailhead depression (r=0.1856) had strongest correlations with UKBCS.

Model Development

- MIXED procedure of SAS® for prediction of BCS using the angles obtained from the images
- Repeated measures analysis with variables repeated by week with cow as the random subject
- AR(1)-autoregressive covariance structure
- Variables selected if significant at p<0.05
- Six models developed (only most descriptive models presented here)

Model parameters and p-				
values for fixed effects				
	USBCS	UKBCS		
No. observations	834	767		
AIC	-230.8	-96.7		
BIC	-220.7	-87.1		
Fixed effects:				
Intercept	0.0109	0.0039		
Avg. Hook Angle	0.0427	0.0053		
Avg. Posterior Hook Angle	0.0545	0.0141		
Avg. Hook Angle * Avg.	0.0254	0.0048		
Posterior Hook Angle				
	5			

Model Limitations

- Small number of images-minimal outlier removal
- Few cows of extreme BCS
- Short duration-unable to detect changes in BCS
- Human error in point identification
- Limited number of BCS evaluators
- BCS is not a perfect indicator of body fat

Conclusions

- Strong relationship between the angles measured in this work with BCS as determined by trained evaluators.
- Angles around the hooks and tailhead have the highest correlations with BCS.
- Potential exists for assessment of BCS using digital imaging.

Moving Forward

- Other technologies, such as thermal imaging, should be explored to facilitate extraction of information from images automatically.
- Many research opportunities remain.
- As these imaging technologies are applied to other industries, costs of these technologies will continue to decrease.
- Automated body condition scoring may become an integral part of decision making on modern dairy farms.

Acknowledgements

- Scottish Agricultural College for use of facilities
- Ainsley Bagnall, John Dickinson, and David Bell, members of the Crichton Royal Farm staff, for their efforts in providing the UKBCS and herd information
- Chloe Capewell and Alan Green of IceRobotics for their assistance in collection of cowside measurements
- Financial contributions of IceRobotics

