

Data Transformation for Rank Reduction in Multi-Trait MACE models

J. Tarres, Z. Liu, V. Ducrocq, F. Reinhardt and R. Reents

joaquim.tarres@dga.jouy.inra.fr

The joint French-German evaluation

- Improve international genetic evaluations
 - Multiple trait MACE models (MT-MACE)
 vs. Single trait MACE
 - Full pedigree information (sire-dam)
 vs. (Sire-MGS-MGD)
 - Pre-corrected records (DYDs and EDCs)
 vs. Deregressed proofs

The Multiple Trait MACE model (MT-MACE)

- National evaluation to obtain pre-corrected records (q)
 - DYD: average of daughter performance adjusted for fixed effects and non-genetic random effects of daughters and genetic effects of bull's mates
- International evaluation model

$$\mathbf{q_i} = \mathbf{\mu} + \mathbf{a_i} + \mathbf{e_i}$$
where $Var(\mathbf{a_i}) = \mathbf{G}$ and $[Var(\mathbf{e_i})]^{-1} = \mathbf{\Psi_i}$

Mixed Model Equations for bull i

$$\left[\mathbf{\psi}_{\mathbf{i}} + a^{ii}\mathbf{G}^{-1}\right]\hat{\mathbf{a}}_{\mathbf{i}} - \frac{1}{2}d_{i}\mathbf{G}^{-1}\left(\hat{\mathbf{s}}_{\mathbf{i}} + \hat{\mathbf{d}}_{\mathbf{i}}\right) = \mathbf{\Delta}_{\mathbf{i}}$$

The MT-MACE model for milk yield

- The Random Regression MACE model (RR-MACE)
 - German RRTDM (3 RRC*3 Lactations) (n=9)
 - Each bull 9 DYDs & 9x9 EDCs
 - 14487 Holstein bulls with data
 - Estimated RRC are highly correlated with National RRTDM
 - Computation requirements can be a limiting factor (i.e. joint bull and cow evaluations) → Rank Reduction
- The Multiple Lactation MACE model (ML-MACE)
 - Convert RRC to 305-day lactation basis = 305(1st RRC) + 0.0009(2nd RRC) + 2.24(3rd RRC)
 - Each bull 3 DYDs & 3x3 EDCs (3 Lactations) (n=3)

ML-MACE vs RR-MACE

EBV on a combined lactation weight (mean of 3 lactations)

Birth year	No. of bulls	r	
1985-1989	3955	1.000	
1990-1994	4088	1.000	
1995-1999	5194	0.999	
2000	867	0.980	
2001	211	0.924	
<10 daughters	172	0.840	
past 120DIM			
Overall	14487	0.995	

Ranking correlations for top 300 bulls: 0.85

Rank reduction (rG-MACE)

Decomposing German genetic (co)variance matrix (G)

$$G = S rG S$$

Eigenvalues of the genetic correlation matrix (rG)

 Obtain the transformation matrix T using eigenvalues D and eigenvectors U of genetic correlation matrix

$$T = S U D^{\frac{1}{2}}$$

Rank reduction of MME from 9 traits to r eigenfunctions

$$\Psi_{rG} = T'\Psi T$$

$$\Delta_{rG} = T'\Delta$$

Rank reduction to 6 eigenfunctions

- Back transformed proofs were a=Ta*
- Pearson correlations with RR-MACE

		Lactation		
		1	2	3
Random	First	1.000	1.000	0.999
regression	Second	0.998	0.997	0.998
coefficient	Third	0.991	0.991	0.992
305-day lactation basis		1.000	0.998	0.991
Combined lactation basis			1.000	

Ranking correlations for top 300 bulls: 0.98

Further rank reduction (CW-MACE)

Different weight of RRC to convert to lactation basis

 Multiply the German genetic (co)variance matrix G by the combined lactation weights W

$$C = W G W$$

Eigenvalues of matrix C

9.91 0.76 0.11
$$10^{-5}$$
 10^{-6} 10^{-7} 10^{-10} 10^{-11} 10^{-12}

 Obtain the transformation matrix T using eigenvalues D and eigenvectors U of matrix C

$$\mathbf{T} = \mathbf{W}^{-1}\mathbf{U} \; \mathbf{D}^{\frac{1}{2}}$$

Rank reduction to 3 eigenfunctions (1)

Pearson correlations with RR-MACE

	Lactation	rG-MACE	CW-MACE
1st RRC	1	0.992	0.998
	2	0.963	0.984
	3	0.952	0.984
2 nd RRC	1	0.948	0.783
	2	0.946	0.645
	3	0.899	0.531
3rd RRC	1	0.975	0.614
	2	0.960	0.571
	3	0.950	0.532

Rank reduction to 3 eigenfunctions (2)

Pearson correlations with RR-MACE

Birth year	No. of bulls	rG-MACE	CW-MACE	ML-MACE
1985-1989	3955	0.988	0.996	1.000
1990-1994	4088	0.985	0.995	1.000
1995-1999	5194	0.979	0.992	0.999
2000	867	0.963	0.992	0.980
2001	211	0.983	0.993	0.924
<10 daughters past 120DIM	172	0.985	0.989	0.840
Overall	14487	0.987	0.995	0.995

Conclusions

- Random Regression MACE and National evaluations are highly correlated
- Multiple Lactation MACE:
 - Low correlations for young bulls with short lactations of daughters
- Rank reduction from 9 RRC to 6 eigenfunctions of genetic correlation matrix:
 - Back transformed EBV highly correlated for the 9 RRC
 - EBV and rankings on a combined lactation basis equal to RR-MACE
- Rank reduction from 9 RRC to 3 eigenfunctions based on combined lactation weights:
 - Back transformation to 9 RRC not possible
 - High correlations with RR-MACE on a combined lactation basis
 - If computing requirements are a limiting factor = compromise reasonable between precision and feasibility

Acknowledgement

- The financial support by
 - German Holstein Association (DHV)
 - Union Nationale des Cooperatives d'Elevage et d'Insemination Animale (UNCEIA)

Thank you