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ABSTRACT 
 
The analysis of microarray data is quickly becoming common place in the field of animal 
science; however, due to the high dimensions and complex structure of expression 
information, traditional statistical models may be inadequate for the analysis of such data. 
To address issues associated with commonly used methods for the identification of 
predictive genes sets, the ant colony algorithm (ACA) is proposed for use on data sets 
with large numbers of features and complex structures. The ACA is an optimization 
algorithm capable of modeling complex data structures without the need for explicit 
parameterization. The incorporation of prior information and communication between 
simulated ants allow the ACA to search the sample space more efficiently than other 
optimization methods. When applied to a high-dimensional cancer microarray data set, 
the ACA was able to identify small subsets of highly predictive and biologically relevant 
genes without the need for simplifying assumptions. Using genes selected by the ACA to 
train a latent variable model yielded increases in prediction accuracy of 16.6% and 6.5% 
when compared to genes sets selected by test statistics and other optimization models. 
Furthermore, the ACA was able to converge to good solutions without the need for 
significant truncation of the data, as required by the other optimization algorithms. The 
ACA was also able to achieve higher prediction accuracies using fewer selected genes 
than the test statistics. This was attributed to ability of ACA to model the complex gene 
interactions, yielding gene lists far less redundant than those selected by test statistics 
used by statistical methodologies.         
 

INTRODUCTION 
 
With the dawn of the “omics” era in biological sciences it has become possible to collect 
thousands of data points on traits of interest, be it single nucleotide polymorphisms, gene 
expression, protein expression, or metabolomic information. With this information it is 
hoped that the mechanisms underlying traits of interest can be elucidated and understood 
with a resolution never before possible; however, with the high-dimensions of these 
datasets, identifying biological relevant features can be challenging. Due to the high cost 
of these technologies, the number of biological replicates is often quite small relative to 
the number of data points captured per subject. In the area of statistical genomics this can 
lead to simplifying assumptions that do not hold true. In the analysis of gene expression 
data, models are often nested within gene as there are not enough degrees of freedom to 
estimate all possible gene interactions (Wofinger et al. 2001). Though these methods can 
be effective in identifying genes with significant marginal contributions they do not take 



into account the contribution of a feature when grouped with other important features 
(Shen et al., 2006). As a result, these methods may select groups of highly correlated 
genes, which in turn, may reduce the predictive power of selected genes. As such, these 
methods may not be suitable for applications in human medicine and breeding genetics, 
were the ultimate goal is to identify genomic features that can predict a given phenotype 
such as disease status, drug response or offspring performance.    
 
For applications in which highly predictive sub-sets of features are needed, machine 
learning and optimization algorithms may be better suited than nested models. These 
methodologies require no explicit modeling of data structures, but rely on simple 
algorithms that are often based on natural processes. The ant colony algorithm (ACA) is a 
machine learning technique that simulates the positive feed-back system used by ant 
colonies to find the shortest route to a food source through the use of pheromone trails 
(Dorigio and Gambardella, 1997). Each simulated ant evaluates a set of features and 
updates a pheromone function, which serves as a common memory for all simulated ants, 
based on the performance of that classifier. The communication between ants has a 
synergistic effect that results in optimal solutions being reached in a computationally 
efficient manner (Dorigio and Gambardella, 1997). The algorithm also lends itself to 
parallelization, with ants being run on multiple processors, which can further reduce 
computation time, making its use feasible for high dimension data sets.   

 
For this study the ACA was implemented using the high-dimensional GCM data-set 
(Ramaswamy et al., 2001), containing 16,063 genes and 14 tumor classes, with very 
limited pre-filtering, and compared to several other feature selection methods, as well as 
previously published results to determine its efficacy in identifying highly predictive 
classifiers. 

MATERIALS AND METHODS 
 
Classification 
 
A Bayesian regression model was used to predict tumor type in the form of a probability 
pic(yic=1), with yic = 1 indicating that sample i is from tumor class c. The regression on 
the vector of binary responses yc was done using a latent variable model (LVM), with lic 
being an unobserved, continuous latent variable relating to binary response yic such that:   
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The liability lic was modeled using a linear regression model as: 
 

iccicic el += βX                  ciciclE βX=)(                   )1,0(~ Neic  
 
where Xic corresponds to row i of the design matrix Xc for tumor class c. 
 



The link function of the expectation of the liability cicβX with the binary response yic was 
constructed via a probit model (West, 2003) yielding the following equations: 
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where Φ  is the standard normal distribution function.  
 
Subject i was classified as having tumor class c if )1( ic =ypic  was the maximum of the 
vector pi , containing all )1( ic =ypic  c=1,…, nc, where nc is the number of tumor classes 
in the data set. 
 
Gene Selection 
 
Features were selected using nested models and the ACA. For nested models fold 
changes (FC), t-statistics (T), and penalized t-statistics (PT) were calculated for each gene 
separately. The ACA evaluated groups of genes and updated pheromone levels based on 
prediction accuracy obtained using LVM. 
 
Ant Colony Algorithm: Artificial ants work as parallel units that communicate through a 
probability density function (PDF) that is updated by weights or “pheromone levels”, in 
this case determined by the performance of the selected features in classifying samples 
(Dorigio and Gambardella, 1997; Ressom et al., 2006), where the probability of sampling 
feature m at time t is defined as: 
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where  )(tmcτ  is the amount of pheromone for feature m (out of a total of nf features) of 
tumor class c at time t; mcη is some form of prior information on the expected 
performance of feature m of tumor class c; α  and β  are parameters determining the 
weight given to pheromone deposited by ants and a priori information on the features, 
respectively. For this study the prior information ( mcη ) was determined as the average FC, 
T, and PT scores of a gene for a given tumor type.   

 
The ACA was initialized with all features having an equal baseline level of pheromone 
used to compute )0(mP  for all features. Using the PDF as defined in equation (2.1), each 
of j artificial ants will select a subset kS  of n features from the sample space S  containing 
all features. The pheromone level of each feature m in kS  is then updated according to 
the performance of kS as:   
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where ρ  is a constant between 0 and 1 that represents the rate at which  the pheromone 
trail evaporates;  )(tmcτΔ  is the change in pheromone level for feature m for tumor class c  
based on the performance of  kS , and is set to zero if feature m kS∉ . This process is 
repeated for all kS   
 
Following the update of pheromone levels according to equation (2), the PDF is updated 
according to equation (1) and the process is repeated until some convergence criteria are 
met. As the PDF is updated, the selected features that perform better will be sampled at 
higher rate by subsequent artificial ants which, in turn, deposit more “pheromone”, thus 
leading to a positive feedback system similar to the method of communication observed 
in real ant colonies. Upon convergence the optimal subset of features is select based on 
the level of pheromone deposited on each feature.   
 
GCM data set 
 
The data set contained 198 samples collected from 14 tumor types: BR (breast 
adenocarcinoma), Pr (prostate adenocarcinoma), LU (lung adenocarcinoma), CO 
(colorectal adenocarcinoma), LY (lymphoma), BL (bladder transitional cell carcinoma), 
ML (melanoma), UT (uterine adenocarcinoma), LU (leukemia), RE (renal cell 
carcinoma), PA (pancreatic adenocarcinoma), OV (ovarian adenocarcinoma), ME 
(pleural mesothelioma), and CNS (central nervous system). The unedited data set 
contained the intensity values of 16063 probes generate using Affymetrix high density 
oligonucleotide microarrays, and calculated using Affymetrix GENECHIP software 
(Ramaswamy et al, 2001). Following the thresholding of intensity values to a minimum 
value of 20 and a maximum value of 16000, a log base 2 transformation was applied to 
the data set. Genes with the highest expression values being less than two times the 
smallest were removed, leaving 14525 probes for analysis.  

RESULTS 
 
The GCM data set has been a benchmark to compare the performance of classification 
and feature selection algorithms. Table 1 shows the best prediction accuracies obtained 
by methods used in this study and several previous studies (GASS (Lin et al., 2006), 
GA/MLHD (Ooi and Tan, 2003), and MAMA (Antonov et al., 2004)) using independent 
test, performed on the same training and validation data sets originally formed by 
Ramaswamy et al., 2001 (GCM split). The proposed ACA yielded substantial increases 
in accuracies over all other methods, with a 6.5% increase in accuracy over the next best 
results obtained using the GCM split (Antonov et al., 2004). Furthermore, the ACA 
achieved increases of 13.9%, 40%, and 16.6% in accuracy over the FC, T, and PT 
methods of feature selection, respectively. 
 
Table 1. Accuracy (%) of tumor class predictions using ant colony algorithm (ACA) and 
several previously published methods. 

 



Method GCM splita Replicated splits 

ACA(14525b) 90.7 84.8 
FC(14525) 79.6 74.8 
T(14525) 64.8 ____ 

PT(14525) 77.8 74.4 
AVGc(14525) 79.6 74.8 
GASS(1000) 81.5 ____ 

GA/MLHD(1000) 76 ____ 
MAMA 85.2 ____ 

aSplit used by Ramaswamy et al 2001;  bNumber of genes selected prior to the 
implementation of feature selection algorithm; cWeighted average of scaled fold change, 
t-test, and penalized t-test values. 
 
To examine the degree of collinearity present in the top genes, as selected by ACA and 
the nested methods, the top 30 features selected for BR were clustered using k-means (R 
Development Core Team, 2006) and then correlated.  The correlations between selected 
features can be seen in the form of heat matrices found in Figure 1 where lighter shades 
indicate high correlations and darker shades indicate low correlations. It is clear, when 
looking at the heat matrices, that the features selected using nested models exhibit 
substantially more collinearity.  
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Figure 1. Heat matrices between the top 30 genes selected for breast adenocarcinoma 
tumors based on: a. fold change; b. penalized t-test; and c. ant colony algorithm 
(red/orange = low correlation, white/yellow = high correlation). 
 



DISCUSION 
 
The performance of the ACA model was superior, not only to the nested methods used in 
this study, but to several reported results using the GCM data set. The ACA consistently 
yielded superior accuracies using fewer genes than the nested methods. The ACA’s 
ability to incorporate prior information in the optimization process provides several 
advantages over other optimization algorithms when dealing with large numbers of 
features. The inclusion of prior information in the pheromone function focuses the 
selection process on genes that should yield better results without the need for an explicit 
truncation of the data, which was needed to achieve good results with the GA (Lin et al., 
2006; Ooi and Tan et al., 2003). Truncation of large numbers of genes could a priori 
eliminate genes from consideration that, though they may not have high predictive ability 
alone, could contribute to the predictive power of an ensemble of genes. Additionally, 
depending on the method of truncation, the reduced gene list could be highly redundant 
(Lin et al., 2006; Shen et al., 2006), further reducing the informativeness of pre-selected 
genes.  
 
The reduction in the collinearity of genes as selected by ACA, particularly in tumor types 
yielding poor performance with filter methods, could be a source of the ACA’s superior 
performance. Due to the reduction in the redundancy of selected features, fewer genes 
were needed for accurate classification. Combined with the fact that the ACA evaluates 
features in groups rather than individually, this should enable the ACA to identify 
clusters of genes with unique expression patterns, each contributing to the overall power 
of a classifier. To this end the ACA identified several small subsets of genes capable of 
obtaining high accuracies in cross validation for many of the 14 tumor types contained in 
the GCM data set.  
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