EAAP Meeting 2007 August 26-29, 2007, Dublin, Ireland

Session 18 "Statistical analysis of genomics data", Theater 9

Detection and Use of Single Gene Effects in Large Animal Populations

Accuracy of Estimation and Use of Gene Content

Nicolas Gengler^{*1,2}, Sven Abras³, Catherine Verkenne¹, Maciej Szydlowski¹ & Robert Renaville³

¹Animal Science Unit, Gembloux Agricultural University, Belgium ²National Fund for Scientific Research (FNRS), Brussels, Belgium ³Animal and Microbial Biology Unit, Gembloux Agricultural University, Belgium

FNRS

Accuracy of Estimation and Use of Gene Content

- Precise estimation of genetic values required to achieve genetic improvement of livestock
- Challenge of integrating molecular and phenotypic data
- Genotypes of animals have to be known
- However, in large animal populations, the vast majority of animals are not genotyped!

Accuracy of Estimation and Use of Gene Content

- Recently new method to estimate gene content
 - Gene content = number of copies of a particular allele in a genotype
- Present study evaluates accuracy and usefulness of this method
 - Based on its ability to detect correctly single gene effects
 - Here simulation in real-life situation of previously detected single gene effects

Conditional Expectation of Gene Contents for Ungenotyped Animals Given Molecular and Pedigree Data

Gengler et al. 2007, Animal 1: 21–28

Predicting Unknown Breeding Values Given Known Values and Pedigree Data

Writing Breeding Values as Sum of Single Gene Effects

$$\hat{g}_{x} = \sum_{i} \hat{\alpha}_{i} \mathbf{q}_{x_{i}} = \begin{pmatrix} \mathbf{1} & \mathbf{A}_{xy} \mathbf{A}_{y}^{-1} \end{pmatrix} \begin{pmatrix} \sum_{i} \hat{\alpha}_{i} \mu_{i} \\ \sum_{i} \hat{\alpha}_{i} \mathbf{q}_{y_{i}} - \mathbf{1} \sum_{i} \hat{\alpha}_{i} \mu_{i} \end{pmatrix}$$
where $\hat{g}_{y} = \sum_{i} \hat{\alpha}_{i} \mathbf{q}_{y_{i}}$ and $\mu_{g} = \sum_{i} \hat{\alpha}_{i} \mu_{i}$
Allele substitution effects
Gene contents
$$\begin{array}{c} Average \\ gene contents \\ = \\ Allele \ frequency x 2 \end{array}$$

Under Certain Hypotheses as Normality of Contributions of Single Gene Effects

Dividing on Both Sides by Allele Substitution Effect

Alternative Derivation of New Method

Comparison with MCMC and Iterative Peeling (Animal, 1: 21-28)

Correlations in simulation study (only 12% genotyped) with simulated gene content:

	Estimation method						
	MCMC	Iterative peeling	Israel and Weller (1998)	New method			
P(B) = 0.4	0.52	0.52	0.38	0.50			
P(B) = 0.2	0.42	0.40	0.38	0.47			

 MCMC and Iterative peeling less practical for large pedigree with sparse data than proposed method

Material and Methods

- Holstein population
 - 12,858,741 first lactation TD records
 - 1,656,599 cows with records
 - 2,755,041 animals in pedigree
- Single gene
 - Bovine transmembrane growth hormone-receptor (GHR)
- Model
 - Classical mixed inheritance (TD) model, with regression on gene content

Material and Methods

- First: regular estimation of single gene effects (α)
- Then: creation of 15 validation data sets
 - 1. Bi-allelic (A,B) gene simulated with same allele frequency than observed in real data
 - 2. Production records modified $y^* = y + d$ where:
 - If AA: $d = \alpha$
 - If AB: d = 0
 - If BB: d = α
 - 3. Only 961 genotyped bulls considered known as in real data, others estimated using new method

Finally: allelic substitution effect re-estimated

			Substitution effect			
		F _A (%)	Milk (g/day)	Fat (g/day)	Protein (g/day)	SCS
Value used	in simulation	23.3	295	-8.14	-1.83	-0.022
Relative to phenotypic SD (%)		N/A	6.5	-4.6	-1.4	-1.3
		Statisti	CS			
Mean		23.3	306	-7.87	-2.84	-0.027
SD		4.4	113	4.87	2.33	0.021
Relative bias (%)		0.2	3.7	3.3	-55.3	-22.4
Relative sta	andard error (%)	18.8	38.5	60.0	139.7	96.4
t test value	s (d.f. = 14)	N/A	2.597	1.667	0.716	1.037
P – values		N/A	0.021	0.118	0.489	0.317
				4/0		
$\sum_{i=1}^{n}$	$(\hat{\theta}_i - \theta) \frac{100}{100}$	-	$\frac{\sum_{i=1}^{n}(\hat{\theta}_{i}-1)}{n-1}$	$\frac{\left(\theta\right)^{2}}{\left(1\right)^{1/2}}$		
	n 0	L				

		Substitution effect				
	F _A	Milk	Fat	Protein	SCS	
	(%)	(g/day)	(g/day)	(g/day)		
Value used in simulation	23.3	295	-8.14	-1.83	-0.022	
Relative to phenotypic SD (%)	N/A	6.5	-4.6	-1.4	-1.3	
	Statistics					
Mean	23.3	306	-7.87	-2.84	-0.027	
SD	4.4	113	4.87	2.33	0.021	
Relative bias (%)	0.2	3.7	3.3	-55.3	-22.4	
Relative standard error (%)	18.8	38.5	60.0	139.7	96.4	
t test values (d.f. = 14)	N/A	2.597	1.667	0.716	1.037	
P – values	N/A	0.021	0.118	0.489	0.317	

	Substitution effect						
	F _A	Milk	Fat	Protein	SCS		
	(%)	(g/day)	(g/day)	(g/day)			
Value used in simulation	23.3	295	-8.14	-1.83	-0.022		
Relative to phenotypic SD (%)	N/A	6.5	-4.6	-1.4	-1.3		
🤇	Statistics						
Mean	23.3	306	-7.87	-2.84	-0.027		
SD	4.4	113	4.87	2.33	0.021		
Relative bias (%)	0.2	3.7	3.3	-55.3	-22.4		
Relative standard error (%)	18.8	38.5	60.0	139.7	96.4		
t test values (d.f. = 14)	N/A	2.597	1.667	0.716	1.037		
P – values	N/A	0.021	0.118	0.489	0.317		

		Substitution effect					
	F _A	Milk	Fat	Protein	SCS		
	(%)	(g/day)	(g/day)	(g/day)			
Value used in simulation	23.3	295	-8.14	-1.83	-0.022		
Relative to phenotypic SD (%)	N/A	6.5	-4.6	-1.4	-1.3		
🤇	Statistics						
Mean	23.3	306	-7.87	-2.84	-0.027		
SD	4.4	113	4.87	2.33	0.021		
Relative bias (%)	0.2	3.7	3.3	-55.3	-22.4		
Relative standard error (%)	18.8	38.5	60.0	139.7	96.4		
t test values (d.f. = 14)	N/A	2.597	1.667	0.716	1.037		
P – values	N/A	0.021	0.118	0.489	0.317		

Conclusions

- New method to approximate gene content potentially very useful
 - To fill in easily missing gene content (SNP panels)
 - To detect single gene effects
 - To allow integration of single gene effects in genetic evaluations
 - Method virtually same limitations as evaluation models (Equivalent mixed model see Animal, 1: 21-28)
- Results shown here indicate limitations in detection of single gene effects
 - Only possible as long as they are sufficiently large!
- Method could be improved
 - Gametic prediction model (Poster 17 in this Session 18)

Acknowledgments: Study supported through FNRS grants F.4552.05 and 2.4507.02, RW-DGA project D31-1112, semen provided by SEMEX and data provided by CDN

Thank you for your attention

Presenting author's e-mail:

gengler.n@fsagx.ac.be