Use of SNP for marker assisted selection in french dairy cattle

F.Guillaume, S. Fritz, D. Boichard, and T.Druet

Description of haplotypes on BTA3 (Hayes et al.,2006) $r^2(h,q) = \sum_{i=1}^{n} \frac{D_i^2}{p_i} / q_1 q_2$										
Size of		1 cM		2cM						
haplotype	Max	nb Haplotype	r ²	nb Haplotype	r ²					
4	16	9.91	0.63	9.55	0.63					
6	64	17.87	0.76	17.45	0.77					
8	256	24.25	0.86	24.4	0.86					
10	1024	27.35	0.91	28.8	0.91					

Simulation of phenotypes

- The central SNP of haplotypes is used as QTL
- Simulation of phenotypes based on polygenic, QTL and residual effects for each animal
- Actual parameters of MAS program are used(h², QTL variance, frequencies, etc.)

Correlations between true and estimated QTL effects Results obtained for young bulls without records – 100 replications Fat yield (h ² =0.30)									
	QTL1	QTL2	QTL3	QTL4	QTL5				
% Var(QTL)	0.05	0.05	0.15	0.05	0.20				
MAS in LE	0.557	0.371	0.573	0.384	0.523				
4 SNPs Haplotypes	0.536	0.314	0.897	0.485	0.947				
10 SNPs Haplotypes	0.714	0.762	0.875	0.673	0.908				

Correlations between true and estimated QTL effects Results obtained for young bulls without records – 100 replications Fat content (h ² =0.50)										
	QTL1	QTL2	QTL3	QTL4						
% Var(QTL)	0.05	0.05	0.40	0.10						
MAS in LE	0.570	0.413	0.681	0.494						
4 SNPs Haplotypes	0.531	0.363	0.933	0.708						
10 SNPs Haplotypes	0.708	0.811	0.942	0.773						
	A	ALIMENTA GRICULTURE ENVIRONI	TION	RA						

Acknowledgments

This study is a collaboration between :

- Institut de l'élevage
- INRA
- UNCEIA
- Labogena

