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The challenge of phenomic
(phenotypic + genomic) data

• Massive phenotypic data exist
• Massive genomic data increasingly 

available
• SNPs

– Human: 1.007 million SNPs (The International 
HapMap Consortium, 2005 )

– Chicken: 2.8 million SNPs (International Chicken 
Polymorphism Map Consortium, 2004)

– Salmon: 2,500 SNPs (Hayes et al., 2004)
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Background

• The “large p, small n problem” in genome-
wide association study.
– Sift through thousands or even tens of thousands of SNPs, to 

select those related to the focal trait.
– Usually there is a small number of phenotypic observations (n) 

and a large number of SNPs (p) typed.

• Examination of SNPs one by one neglects 
information from joint effects.

• Include all markers, model all possible 
interactions? Unrealistic…
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Objective

• Explore model-free techniques that 
have been used successfully in many 
domains.

• Machine learning: prediction, mappings 
from inputs to outputs.

• Use machine learning methods for 
identifying subset of SNPs associated 
with chick mortality in broilers.
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SNP-mortality data

• Genomics Initiative Project at Aviagen, Ltd.
– Sire family mortality rates (raw and adjusted) 

from 0-14d progeny groups of a commercial 
broiler line.

– 5,166 SNPs spreading over the chicken 
genome were typed on 201 sires.

– 95.5% in HWE at 0.001 significance level
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Distribution of raw mortality rate

Used for validation

Distribution of adjusted 
mortality rate

Used for SNP selection
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Methods
Discretizing the continuous mortality rates into two classes by two 
thresholds, c1 and c2, to frame it as a case-control classification 
problem. 
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Methods
SNP subset discovery—filter + wrapper
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Filter: information gain

Wrapper: naïve Bayesian classifier
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Top scoring SNPs selected from filter

Distribution of information gain of 
the top 50 SNPs in each group
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Wrapper results
Naïve Bayesian cross-validation prediction error rates of 

subsets of SNPs selected by four search methods
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Chromosome 1:  the 9 sets of selected SNPs
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Prediction accuracy of the top 50 SNPs
(full set) and of those in the subset
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Ability of predicting mortality rates

Predicted residual sum 
of squares (PRESS)
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Statistical models to assess between-sire variance

Without SNP information (random effects logistic model)

After adding a set of SNPs (mixed effects logistic model)

Between-sire variance decreased 
as #SNPs increased

Sires nested in SNP configurations (nested random effects model)

Significant between-sire variance

Between-sire variance was redistributed towards the between-SNP
Configuration variance as #SNP configurations increased
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Conclusions
• 97-98% of variation in mortality was within

families.
• Machine learning procedure was applied to early 

mortality, as classification problem.
• Predictive ability enhanced by reducing #SNPs
• More advanced curve fitting methods to be 

explored
– Generalized additive models
– Reproducing kernel Hilbert space regression
– Neural networks
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