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The challenge of phenomic
(phenotypic + genomic) data

 Massive phenotypic data exist

 Massive genomic data increasingly
available

e SNPs

— Human: 1.007 million SNPS (The International
HapMap Consortium, 2005 )

— Chicken: 2.8 million SNPS (international Chicken
Polymorphism Map Consortium, 2004)

— Salmon: 2,500 SNPs (Hayes et al., 2004)



Background

 The “large p, small n problem” in genome-

wide association study.

— Sift through thousands or even tens of thousands of SNPs, to
select those related to the focal trait.

— Usually there is a small number of phenotypic observations (n)
and a large number of SNPs (p) typed.

- Examination of SNPs one by one neglects
iInformation from joint effects.

» Include all markers, model all possible
Interactions? Unrealistic...



Objective

« Explore model-free techniques that
have been used successfully in many
domains.

e Machine learning: prediction, mappings
from Inputs to outputs.
e Use machine learning methods for

identifying subset of SNPs associated
with chick mortality in broilers.



SNP-mortality data

« Genomics Initiative Project at Aviagen, Ltd.

— Sire family mortality rates (raw and adjusted)
from 0-14d progeny groups of a commercial
broiler line.

— 5,166 SNPs spreading over the chicken
genome were typed on 201 sires.

—95.5% in HWE at 0.001 significance level



Distribution of raw mortality rate

Used for validation
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Methods

Discretizing the continuous mortality rates into two classes by two
thresholds, c1 and c2, to frame it as a case-control classification

problem.

Group (v, 1 — ) (c1, c0)F (c1,c3)P Number of sires
1 (0.025,0.975) (—8.92,7.80) (—8.90,8.05) 11
2 (0.05,0.95) (—6.31,6.70) ({—6.54,6.69) 21
3 (0.10,0.90)  (=5.09,5.17) ({-5.16,5.20) 40
4 (0.15,0.85) (—4.34,4.09) (—4.26,4.08) 63
5 (0.20,0.80) (—3.50,3.22) (—3.47.3.31) 81
6 (0.25,0.75) (-2.77,2.65) (-2.77,2.52) 102
7 (0.30,0.70) (-2.19,1.71) ({-2.21,1.73) 120
8 (0.35.0.65) (—1.70,1.20) ({—1.66,1.18) 143
0 (0.40,0.60) (—1.20,0.63) ({—1.19,0.65) 161
10 (0.45,0.55) (—0.76,0.09) ({-0.72,0.16) 180
11 (0.5) (—0.27) (—0.28) 201




Methods

SNP subset discovery—filter + wrapper

Subset of features
{e.g. 50}

Final optimal subset
of features



Filter: information gain Nt N- " Nf+ N~ Nt N
=) ; NN

Wrapper: naive Bayesian classifier

Pr(A; =ay,...., Ay = aq¢|C =¢) =Pr(4; =a1|C =¢)---Pr(Ar = a;|C = ¢)

—~ o count(A; = a;,C = ¢)

Pr(4; = a;|C =c¢) = count(C' = ¢)




Top scoring SNPs selected from filter

Information gain
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Wrapper results
Naive Bayesian cross-validation prediction error rates of
subsets of SNPs selected by four search methods

Prediction error rate

Group  FS® Fss BSE!

1 0091 [1] 0 (3] 0.091 [1] 0.455 [47]
2 0095 [3] 0 [4] 0.095 [3] 0.429 [46]
3000250 [2] 0 [12] 0.250 [2] 0.325 [37]
40270 [6] 0 [17] 0.270 [4] 0.444 [43]
5 0284 [4] 0.012 [19] 0.284 [4] 0.309 [38]
6 0343 ]2 0.039 [35] 0343 [2] 0.373  [37]
7 0315 [10] 0.033 [39] 0.317 [8] 0.417 [38]
8 0402 [4] 0.059 [42] 0.402 [4] 0.434 [24]
o 0.360 [3] 0.068 [40] 0.360 [3] 0.342 [39]
10 0325  [§] 0.100 [38] 0.325 [8] 0.342 [22]
11 0376 [4] 0.075 [39] 0.376  [4] 0.381 [2

|




Chromosome 1: the 9 sets of selected SNPs
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Prediction accuracy of the top 50 SNPs
(full set) and of those in the subset
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ADbility of predicting mortality rates

Group Number of SNPs in model p-value of model PRESS

Ng
M; =i+ SNPy; +e¢;

1 3 0.7610 0.0026
i=1 2 4 0.2805 0.0025

Predicted residual sum 3 12 0.2933 0.0030
of squares (PRESS) 1 17 0.0004  0.0027
N 5 19 0.0027 0.0031

PRESS = )  (M; — M) 6 35 0.0011 0.0030
i=1 7 30 <0.0001  0.0035

3 49 <0.0001  0.0040

9 40 0.0016 0.0041

10 38 0.0020 0.0036

1 30 0.0019 0.0043
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Statistical models to assess between-sire variance

Without SNP information (random effects logistic model)

1.3%'11;.[?& jj =+ Uy Significant between-sire variance

After adding a set of SNPs (mixed effects logistic model)
G

l‘i'git-li’?l_ijkj' = + E E’Npéj + U;  Between-sire variance decreased
j=1 as #SNPs increased

Sires nested in SNP configurations (nested random effects model)

lfig]l_t-li?l_ijkj = o+ §; + Ly }Z:,IF., =0+ (; + Ui -+ e

Between-sire variance was redistributed towards the between-SNP
Configuration variance as #SNP configurations increased
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Conclusions

97-98% of variation in mortality was within
families.

Machine learning procedure was applied to early
mortality, as classification problem.

Predictive ability enhanced by reducing #SNPs

More advanced curve fitting methods to be
explored

— Generalized additive models

— Reproducing kernel Hilbert space regression

— Neural networks
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