Validation of genomic selection in an outbred mice population

A Legarra, JM Elsen, E Manfredi, C Robert-Granié andres.legarra@toulouse.inra.fr

UR631, INRA-SAGA, BP 52627 31326 Castanet Tolosan CEDEX

27 August 2007, EAAP, Session 18, abstract 1071

A Legarra, JM Elsen, E Manfredi, C Robert-CValidation of genomic selection in an outbred

EAAP2007

1 / 16

Introduction to Genomic selection

Let there be a "SNP" model of the breeding value: $BV = \sum (SNP_i)$. Meuwissen et al 2001 showed by simulation:

- High predicting accuracies (up to 0.85).
- Overpasses practical problems in MAS (Boichard 2006).
- Very interesting breeding tool (Schaffer, 2006; Dekkers, 2007).

The idea is based on the existence of Linkage Disequilibrium between QTL and markers

Why to test genomic selection?

Why to test genomic selection?

- It is expensive (200€ per animal?)
- Restrictive assumptions (equilibrium mutation-drift, big population, no selection)
- Simple genetic model

What about an experiment?

- Slow and expensive
- Let use public data today

A Legarra, JM Elsen, E Manfredi, C Robert-CValidation of genomic selection in an outbred

EAAP2007

3 / 16

The data

Nature Genetics 38:879-887 (2006) Genome-wide genetic association of complex traits in heterogeneous stock mice

W Valdar, LC Solberg, D Gauguier, S Burnett, P Klenerman, WO Cookson, MS Taylor, J Nicholas, P Rawlins, R Mott & J Flint

- http://gscan.well.ox.ac.uk
- Heterogeneous Stock Mice, 50 generations of random mating
- 13,459 SNPs, 1,904 fully phenotyped mice
- Weight at 6 weeks, highly heritable

How to test?

"Accuracy" of Classical BLUP vs genome-wide models by cross-validation.

- ① Split the data into two at random : $\mathbf{y} = [\mathbf{y}_1, \mathbf{y}_2]$. $\mathbf{y}_1 \rightarrow \text{training}$; $\mathbf{y}_2 \rightarrow \text{validation}$.
- 2 Estimation
 - Estimate SNP effects â from y₁
 - Estimate Classical BLUP EBVs $\hat{\mathbf{u}}$ from \mathbf{y}_1
- 3 Validation
 - Estimate $\hat{\mathbf{y}}_2$ from SNP estimates $\hat{\mathbf{a}}$
 - Estimate $\hat{\mathbf{y}}_2$ from Classical BLUP EBVs $\hat{\mathbf{u}}$
- **4** Compute $r(\mathbf{y}_2, \hat{\mathbf{y}}_{2SNP})$, and $r(\mathbf{y}_2, \hat{\mathbf{y}}_{2BLUP})$.

In a selection process: $\Delta G = i \cdot r(\mathbf{y}_2, \mathbf{\hat{y}}_2) \cdot \sigma_{\mathbf{y}_2}$.

A Legarra, JM Elsen, E Manfredi, C Robert-CValidation of genomic selection in an outbred

EAAP2007

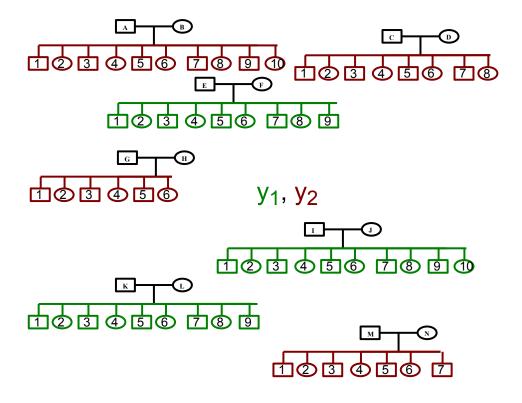
5 / 16

Cross-validation

How to split \mathbf{y} in $[\mathbf{y}_1, \mathbf{y}_2]$?

- Sampling families: Most LD is only at the population level, less powerful. BLUP does not give information in this case (no known relatives).
- Splitting families in two. High LD because there is a family structure and we use full-brothers to predict full-brothers. Comparable to a two-generations (dairy cattle) design.

Sampling families

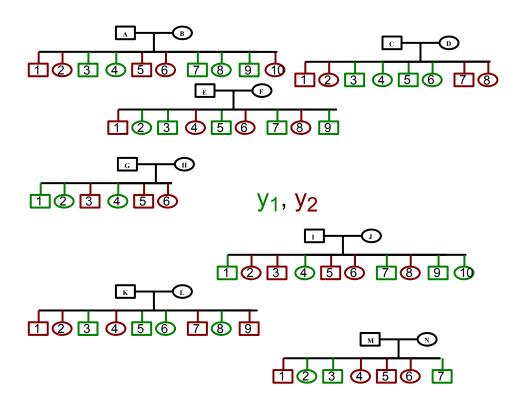


A Legarra, JM Elsen, E Manfredi, C Robert-CValidation of genomic selection in an outbred

EAAP2007

7 / 16

Splitting families



Models

- 1 Classical BLUP $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{Z}\mathbf{u} + \mathbf{e}$
- **2** SNP $y = X\beta + Wa + e$
- 3 Mixture allows for SNPs without any effect.
 - $a_i \sim N(0, \sigma_a^2)$ with probability p_a
 - $a_i = 0$ with probability $1 p_a$
- 4 Classical+SNP $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{W}\mathbf{a} + \mathbf{Z}\mathbf{u} + \mathbf{e}$
- **5** ... and combinations of the above
- 6 ... and we tried different priors (including Meuwissen et al. 2001)

We used MCMC for everything.

A Legarra, JM Elsen, E Manfredi, C Robert-CValidation of genomic selection in an outbred

EAAP2007

9 / 16

Genomic selection \approx Classical BLUP?

Genomic selection \approx Classical BLUP?

Look at model 2; define a pseudo-overall breeding value $v, v_i = \sum a_{ij}$. Then:

$$\mathbf{y} = \ldots + \mathbf{W}\mathbf{a} = \ldots + \mathbf{Z}\mathbf{v}$$
 where $\mathbf{v} = \mathbf{W}\mathbf{a}$, $\mathbf{v} \sim \mathcal{N}(\mathbf{0}, \mathbf{W}\mathbf{W}'\sigma_a^2)$.

Genomic selection is akin to Classical BLUP where **WW**' is an IBS pseudo-relationship matrix. For the mixture approach, some row/cols in **W** are nullified.

Results (10 replicates), sampling families

Table: Correlations $r(\mathbf{y}_2, \hat{\mathbf{y}}_2)$, sampling families

Method	$r(\mathbf{y}_2, \hat{\mathbf{y}}_2)$
Classical BLUP	0
SNP	0.21
Mixture	0.21
Classical BLUP + SNP	0.19
Others	≤ 0.21

A Legarra, JM Elsen, E Manfredi, C Robert-CValidation of genomic selection in an outbred

EAAP2007

11 / 16

Results (10 replicates), splitting families

Table: Correlations $r(\mathbf{y}_2, \hat{\mathbf{y}}_2)$, splitting families

Method	$r(\mathbf{y}_2, \hat{\mathbf{y}}_2)$
Classical BLUP	0.59
SNP	0.49
Mixture	0.49
Classical BLUP + SNP	0.60
• • •	
Others	≤ 0.49

The end

Conclusions:

- 1 The genomic model performs
 - better than classical BLUP when there is no information from relatives
 - worse when there is family information (real-life situations)
- 2 The simplest "SNP" model performs better than more complex ones
- 3 Historical LD can be used but is less powerful than close LD due to family relationships
- 4 The genomic model implicitely assumes a pseudo-relationship matrix based on identity by state among markers. Sometimes this information might be better than pedigree.

Why?

- Are different loci segregating in different families?
- How many QTLs around?

A Legarra, JM Elsen, E Manfredi, C Robert-CValidation of genomic selection in an outbred

EAAP2007

13 / 16

The end

Homework assignment (for us)

- Analyze more traits
- More models? Non parametric?

Take-home message

- (We have) reasonable doubts whether genomic selection will work immediately.
- More testing has to be done in real-life data (e.g. Sölkner, this conference). Cross-validation is a good tool.
- We need a better modeling of marker locus effects allowing for population and familiar LD and LA.

Thank you

Extended results (10 replicates), sampling families

Table: Correlations $r(\mathbf{y}_2, \hat{\mathbf{y}}_2)$, sampling families

Method	Mean	S.D.	$var(\hat{\mathbf{y}}_2)$
Classical BLUP + SNP	0.19	0.03	0.26
SNP	0.21	0.04	1.33
SNP - prior	0.17	0.04	4.14
Mixture	0.21	0.05	1.32
Classical BLUP	0	0	0
Others	≤ 0.21		

A Legarra, JM Elsen, E Manfredi, C Robert-CValidation of genomic selection in an outbred

EAAP2007

15 / 16

Extended results (10 replicates), splitting families

Table: Correlations $r(\mathbf{y}_2, \hat{\mathbf{y}}_2)$, splitting families

Method	Mean	S.D.	$var(\hat{\mathbf{y}}_2)$
Classical BLUP + SNP	0.60	0.01	2.26
SNP	0.49	0.01	2.35
SNP - prior	0.43	0.02	4.16
Mixture	0.49	0.02	1.28
Classical BLUP	0.59	0.01	2.28
Others	≤ 0.49		