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INTRODUCTION 

A method that could select a sample (e.g. 5%) of the population to be genotyped and at the same time inferring with 
high probability genotypes for the remaining animals in the population could be beneficial.  If it were possible to 
evaluate every possible subset of animals equal to the desired size (e.g. 5%) then the optimal solution could be 
found.  However, this is computationally impossible at the current time.  Ant colony algorithms (ACA) were 
proposed by Dorigio et al. (1999) to solve difficult optimization problems such as the traveling salesman. Real ant 
colonies communicate through the use of chemicals called pheromones which are deposited along the path an ant 
travels. Ants that choose a shorter path will transverse the distance at a faster rate. Artificial ants work as parallel 
units that communicate through a cumulative distribution function (CDF) that is updated by weights, determined by 
the �distance� traveled on a selected �path�, which are analogous to the pheromones deposited by real ants (Dorigio 
et al. 1999, Ressom et al. 2006). Therefore, the objectives of the current study were to investigate the usefulness of a 
search algorithm as implemented by Ressom et al. (2006) to optimize the amount of information that can be 
extracted from a pedigree while only genotyping a small portion.  The results of the proposed method are compared 
to other viable methods to ascertain any potential gain.   

                                    MATERIALS AND METHODS 
Ant colony optimization:  The ACA, as defined by Dorigio et al. (1999) and Ressom et al. (2006), is a group of 
parallel units with a common memory in the form of a PDF, where the probability of sampling feature m at time t is 
defined as: 
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where  )(tmτ  is the amount of pheromone for feature m at time t; mη is some form of prior information on the 

expected performance of feature m; α  and β  are parameters determining the weight given to pheromone deposited 
by ants and a priori information on the features. 
 Using the PDF as defined in equation (1), each of j artificial ants will select a subset kS  of n features from 

the sample space S  containing all features. The pheromone level of each feature m in  kS  is then updated 

according to the performance of kS as:  
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where ρ  is a constant between 0 and 1 that represents the rate at which  the pheromone trail evaporates;  )(tmτ∆  

is the change in pheromone level for feature m based on the performance of  kS , and is set to zero if feature 

m kS∉ . This process is repeated for all kS  k=1,�,j.  
In the specific case of selecting individuals for genotyping, the features are candidate animals for 

genotyping from a full or partial pedigree.  The pheromone of some feature, m, in the current study was proportional 
to the sum of an animal�s number of mates and number of offspring. Consequently, the performance of a particular 
subset, Sk, is determined the by:  
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 A relatively small value of 0.01 was chosen as the evaporation rate in an attempt to reach convergence 
faster.  For each of j artificial ants, a subset of animals was chosen equal to approximately 5% of the pedigree size.  

  For the five replicates of simulated pedigrees, 100 ants were used for each of 30,000 iterations.  Each 
animal in the pedigree was randomly assigned to be either homozygous or heterozygous.  The probability of an 
animal being assigned to one of these two groups was dependant on the allelic frequencies. The assignment of 
homozygous/heterozygous status was performed each iteration.  An animal�s probability of being selected was based 
on maximizing the corrected sum of the animal�s number of offspring and number of mates.  The uncorrected or 
original sum of each animal was used as prior information.  Simulated allele frequencies of 0.7/0.3 and 0.5/0.5 were 
used to assign genotypes to the animals in the pedigree.   

In the case of the field data pedigree the same parameters were used as in the simulated pedigrees with the 
following exceptions; 100 ants were used for each of 5,000 iterations.  The top 1,455 animals out of 29,101 were 
selected (5% of the total pedigree) based on the pheromone deposited by the artificial ants and were assumed to have 
known genotypes for the peeling procedure.  In the case of the research pedigree, 100 ants were used for each of 
20,000 iterations.  The top 434 out of 8,688 animals were selected based on the same criteria. 

Peeling: Animals with missing genotypic information can be assigned one or both alleles given parental, 
progeny, or mate information.  Given this trio of information sources and following an algorithm similar to Qian and 
Beckmann (2002) and Tapadar et al. (2000), imputation on missing genotypes were made and additional genotypic 
information was garnered.   

After the peeling process, the number of animals with one or two alleles known was computed.  The 
percentage of alleles known based on the peeling procedure (AKP) was then computed as follows: 
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where 1n  and 2n  were the number of animals with 2 and 1 allele(s) known and an  was the total number of animals 

in the population.  Furthermore, 1n  and an  were multiplied by two since each animal has two alleles.   
Gibbs sampling: After the known alleles were determined by the peeling process described above, these 

alleles were used as prior information in the Gibbs Sampler to assign genotypes to the remaining animals in the 
population.  The probability of allele jia , , (j = 1 or 2) being assigned as the true allele j for animal i was calculated 
as: 
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Using )( , jiap  and the number of known alleles, the benefit function was then computed as 
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where 1n , 2n , and 3n  were the number of animals with 2, 1 or 0 alleles known, respectively, and )( , jiap  as 

previously defined.  The percentage of alleles known after the Gibbs sampling process, GAK , was such that  
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where benefit  was the benefit function computed above and an  was the total number of animals in the population. 
During each round of the sampling process only one genotype of a given animal was assigned as the true 

genotype.  Thus, at the end of the sampling process every animal had a probability of having the true 
genotype, igPTG , assigned as  

 
samples ofnumber  total
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where genotype g  was the true genotype for animal i .  The average probability of the true genotype being 
identified for every animal in the population (APTG)  was computed using the following:   
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where igPTG  was defined as above and an  was the total number of animals in the population.  In contrast to the 
benefit function, APTG only required that the animal have the correct genotype and therefore was able to 
compensate for the incorrect allele position and sampling the correct unknown allele. 

Simulation: A pedigree with four over-lapping generations was simulated.  The base population included 
500 unrelated animals and subsequent generations consisted of 1,500 animals with a total of 5,000 animals 
generated.  For the simulated pedigrees as well as the real pedigrees, one gene with two alleles was simulated for 
every animal in the pedigree file.  For the analyses using Gibbs sampling, a total chain length of 25,000 iterations 
was run, where the first 5,000 iterations were discarded as burn-in. 

RESULTS 
Table 1. Results from simulated pedigrees1 
 ACO A-1 
 True allele frequency True allele frequency 
Parameter 0.30 0.50 0.30 0.50 
No. of animals with     
1 allele known 2,166.80 2,063.00 2,262.60 2,152.80 
2 alleles known 811.20 787.20 670.00 652.00 
Benefit function 8,055.01 7,550.36 8,019.88 7,497.70 
AKP 37.89 36.29 36.03 34.57 
AKG 80.55 75.71 80.20 74.98 
APTG 0.63 0.57 0.62 0.56 
1 Results are the average of 5 replicates; A-1 is from Spangler et al., 2007. 
 

Simulated pedigrees:  The results can be found in Table 1.  Results from using the inverse of the 
relationship matrix (A-1)   are from Spangler et al. (2007).  As compared to selecting males and females based of off 
the diagonal element of the inverse of the relationship matrix, the increase in AKP ranged from 4.98 to 5.16%.  This 
gain is due to the amount of animals with both alleles known after the peeling process which was between 20.74 and 
21.07% larger in favor of ACO.  Admittedly, the gains in AKG were slight as compared to selecting males and 
females based of off the diagonal element of A-1, yet ACO still performed better. The increase in APTG ranged from 
1.6 to 1.8% in favor of ACO over selecting males and females from their diagonal element.   
 
Table 2. Results from the field data pedigree1 
 ACO A-1 
 True allele frequency True allele frequency 
Parameter 0.30 0.50 0.30 0.50 
No. of animals with     
1 allele known 11,451.00 10,382.00 11,756.00 10,607.00 
2 alleles known 1,767.00 1,706.00 1,473.00 1,470.00 
Benefit function 34,977.61 32,547.06 34,876.62 32,282.40 
AKP 25.75 23.70 25.26 23.28 
AKG 60.10 55.92 59.92 55.47 
APTG 0.45 0.40 0.44 0.39 
1 A-1 results are from Spangler et al., 2007. 

 
Field data pedigree: A field data pedigree as described by Spangler et al. (2007) was used to determine the 

effectiveness of the proposed method in a larger pedigree more representative of what might be encountered in the 
beef cattle industry. Results can be found in Table 2 along with results from alternative approaches (Spangler et 
al.,2007).  The largest gains were seen in AKP which ranged from 1.80 to 1.94% as compared to selection of males 
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from A-1..  Table 2 shows advantages, although slight, of ACO over the methods using the diagonal element of A-1 
for the parameters of AKG and APTG. 

 
Table 3. Results are from the research pedigree1 
 ACO A-1 
 True allele frequency True allele frequency 
Parameter 0.30 0.50 0.30 0.50 
No. of animals with     
1 allele known 5,101.00 4,009.00 4,747.00 3,768.00 
2 alleles known 975.00 720.00 1,082.00 751.00 
Benefit function 13,916.18 11,990.71 13,743.44 11,848.01 
AKP 40.58 31.36 39.77 30.33 
AKG 80.09 68.15 79.09 68.19 
APTG 0.69 0.52 0.68 0.52 
1 A-1 results are from Spangler et al., 2007. 
 

Research pedigree: The research pedigree used here has been previously described by Spangler et al. 
(2007). Results from the ACO analysis can be found in Table 3.  Realized gains in AKP of ACO over  males and 
females from A-1 ranged from 2.04 to 3.40%, respectfully.  

DISCUSSION 
The results suggest that ACO is the most desirable method of selecting candidates for genotyping, particularly after 
peeling (AKP).  From these results it appears that the number of offspring and the number of mates along with the 
homozygosity of the genotyped animals is critical in the selection process.  Differences in performance of ACO do 
exist between the pedigrees explored in the current study.  This is due to the proportion of sires and dams that have 
large numbers of offspring and/or mates and the amount of inbreeding within a given pedigree.  Ant colony 
optimization offers a new and unique solution to the optimization problem of selecting individuals for genotyping.  
The heuristics used in the current study such as the number of ants, number of iterations, and the evaporation rate 
are unique only to the pedigrees used in the current study.  Each pedigree will offer a different structure and thus 
require a different set of parameters.  
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