Session 10, 70

Genetic relationships among year classes for marbling traits

in Japanese Black cattle

T. Osawa¹, K. Kuchida¹, S. Hidaka¹ and T. Kato²

¹Obihiro University of A&VM, Obihiro, 080-8555, Japan

²Tokachi Federation of Agricultural Cooperative, Obihiro, 080-0013, Japan

Introduction and Objective

Osawa: s11053@st.obihiro.ac.jp

Marbling scores (MS) in Japan is an economically important factor, and the improvement with emphasis on MS is advanced. However, MS is visually classified into 12 levels by a grader, and the evaluation is subjective. Thus, the scale of the classification might change by year. In addition, MS standard may become severe by year. Hence, MS at present might not be able to be treated as the same as a few years ago.

The objective of this study was to estimate genetic parameters for marbling traits using a random regression model on vear class.

Materials and Methods

Data

The Data were 7,359 Japanese Black cattle at carcass market in Hokkaido, Japan during Apr/00-Mar/07

The number of Pedigree records were 27,015.

Digital images of the 6-7th cross section were taken by two photography equipments.

A: 2 mega pixel (1cm is 60pixel) Using Apr/00-Nov/04

B: 12 mega pixel (1cm = 100 pixel) Using Dec/04-Mar/07

Traits analyzed

Marbling score (MS, 1 to 12) by grader, fat area ratio (FAR) and overall coarseness of marbling (OCM) * by image analysis. *OCM of $A = 0.6 \times OCM$ of B

Statistical model

Fixed effects

OCM :25.7 OCM :24.2 Date at carcass market (146 levels), sex of animal (2 levels) and slaughter age (11 levels) Random effects

Fattening farm (203 levels) and additive genetic effects with random regression on year class (Apr/00-Mar/01, Apr/01-Mar/02, Apr/02-Mar/03, Apr/03-Mar/04, Apr/04-Mar/05, Apr/05-Mar/06 and Apr/06-Mar/07) using second-order Legendre polynomials, and heterogeneous residual variances based on year class. Using Gibbs3f90 program

(200,000 rounds and 50,000 burn-in)

Results and Conclusions

Distribution of data

Number of records	and mean (±SD)	by year class	
Voar class	n	MS	5

Year class	n	MS	FAR	OCM
Apr/00-Mar/01	1514	4.9±2.2	35.8 ± 7.7	19.3 ± 5.1
Apr/01-Mar/02	1253	5.2 ± 2.3	38.8 ± 7.7	19.7 ± 5.2
Apr/02-Mar/03	1195	5.9 ± 2.5	41.4 ± 7.6	20.1 ± 4.8
Apr/03-Mar/04	732	5.5 ± 2.5	40.1 ± 7.4	20.0 ± 5.1
Apr/04-Mar/05	489	5.4 ± 2.3	41.8 ± 7.7	20.8 ± 4.6
Apr/05-Mar/06	846	5.4 ± 2.2	43.7 ± 8.2	21.3 ± 3.7
Apr/06-Mar/07	1330	5.4 ± 2.0	44.4 ± 8.0	21.6 ± 3.7

IVIS							
Year class	1.	2.	3.	4.	5.	6.	7.
1. Apr/00-Mar/01		0.97	0.92	0.88	0.88	0.91	0.96
2. Apr/01-Mar/02	0.90		0.99	0.97	0.97	0.98	0.98
3. Apr/02-Mar/03	0.73	0.95		1.00	0.99	0.99	0.96
4. Apr/03-Mar/04	0.58	0.87	0.98		1.00	0.99	0.95
5. Apr/04-Mar/05	0.46	0.77	0.91	0.98		0.99	0.95
6. Apr/05-Mar/06	0.30	0.59	0.75	0.85	0.94		0.98
7. Apr/06-Mar/07	0.06	0.20	0.32	0.44	0.61	0.84	
FAR							
Year class	1.	2.	3.	4.	5.	6.	7.
1. Apr/00-Mar/01		0.98	0.95	0.94	0.95	0.95	0.93
2. Apr/01-Mar/02	0.93		0.99	0.99	0.98	0.97	0.91
3. Apr/02-Mar/03	0.77	0.95		1.00	0.99	0.96	0.89
4. Apr/03-Mar/04	0.64	0.87	0.98		1.00	0.97	0.90
5. Apr/04-Mar/05	0.56	0.79	0.91	0.97		0.99	0.93
6. Apr/05-Mar/06	0.49	0.63	0.72	0.80	0.92		0.98
7. Apr/06-Mar/07	0.37	0.34	0.34	0.42	0.60	0.87	
OCM							
Year class	1.	2.	3.	4.	5.	6.	7.
1. Apr/00-Mar/01		0.92	0.80	0.73	0.73	0.81	0.94
2. Apr/01-Mar/02	0.94		0.97	0.94	0.94	0.97	0.93
3. Apr/02-Mar/03	0.82	0.97		0.99	0.99	0.99	0.85
4. Apr/03-Mar/04	0.74	0.92	0.99		1.00	0.98	0.81
5. Apr/04-Mar/05	0.71	0.89	0.96	0.99		0.98	0.82
6. Apr/05-Mar/06	0.71	0.83	0.87	0.90	0.95		0.91
7 Apr/06-Mar/07	0.64	0.62	0.59	0.61	0.71	0.89	

Variance components

.6

:10 FAR :57.6

FAR

additive genetic variance 🗡 , fattening farm variance 📥

FAR :60.5

variance due to fattening farm variance (----)

Conclusions

Mean of FAR has increased though mean of MS hasn't increased. MS standard became severe

Variance components for MS and OCM change over time.

Heritability estimates for MS tends to decrease though those for FAR increase.

Genetic correlations for MS and FAR were 0.9 or higher among most of the year classes.

For 7 years, MS could be treated as the same traits. *However, when analyzing MS for longer period of time (e.g. over 10 years), further investigation may be needed.

٠Q

:54.8

Sample image

A P P E N D I X

Carcass data

The carcass data were collected from Japanese Black steers shipped between April, 2000 and March, 2007 to a meat processing plant in Hokkaido, Japan. This data set was edited so that a minimum of 3 animals were included in each of the following subclasses: date at carcass market, slaughter age in months, fattening farm and sire. The final number of animals was 7,359. There were 146 subclasses for dates at carcass market, 11 subclasses for slaughter age (25, 26, ...35 mo), and 203 for fattening farm.

Marbling traits

The marbling traits considered were fat area ratio (FAR), overall coarseness of marbling particles (OCM) calculated by image analysis, and beef marbling score (MS) which was evaluated by an expert grader. Detailed methods of calculation are shown bellow.

Digital images of the carcass cross section were taken between the 6^{th} and 7^{th} ribs by two types of photographing equipment (**A** and **B**). **A** was set a 2 mega pixels digital camera (1cm = 60 pixels) used between April, 2000 and November, 2004. **B** was set a 12 mega pixels digital camera (1cm = 100 pixels) used between December, 2004 and March, 2007. A flowchart of image analysis traits is illustrated in Figure 1, and details of these traits are as follows.

Figure 1. Detailed flow of image analysis to calculate coarseness of marbling particles.

FAR: ribeye with a border line (Figure 1-a) were binarized as lean and fat using the image analysis program. FAR was calculated by dividing all pixels of the fat image (Figure 1-b) by ribeye area.

OCM: The binarized image (Figure 1-b) was thinned with 5 rounds (Figure 1-c), and the hairlines were removed (Figure 1-d) using the image analysis program. OCM was calculated by dividing all pixels of fat from thinning image without the hairline (Figure 1-d) by all pixels of fat image (Figure 1-b). A high OCM value indicates a muscle involving many rough marbling particles. OCM in **B** equipment was timed 0.6 to equal the value in **A** equipments.

Sample image

OCM :15.4

MS :3 FAR :36.8

OCM :23.0

MS :4 FAR :39.7 OCM :19.0

MS :5 FAR :45.6 OCM :20..9

MS :6 FAR :48.9 OCM :26.3

MS :7 FAR :50.9 OCM :25.5

MS :8 FAR :52.3 OCM :22.6

MS	:11
FAR	:60.5
OCM	:24.2

1	MS	:12
50.5	FAR	:63.2
4.2	OCM	:21.6

MS	:10
FAR	:57.6
OCM	:25.7

	Year class	Number of	Number of	1	1. 2.	3	А	5	6	7
		sires	MGS	1.		5.	4.	5.	0.	7.
1.	Apr/00-Mar/01	53	234		33	24	15	12	12	12
2.	Apr/01-Mar/02	54	197	145		28	20	14	15	12
3.	Apr/02-Mar/03	30	190	142	141		19	14	16	15
4.	Apr/03-Mar/04	31	147	112	110	110		18	19	15
5.	Apr/04-Mar/05	38	115	87	91	97	87		26	18
6.	Apr/05-Mar/06	47	154	101	103	107	92	84		29
7.	Apr/06-Mar/07	57	165	100	103	106	91	92	101	

Table 1. Numbers of sires, MGS, and common sires (above diagonal) and MGS (bellow diagonal) in each pair of year class

Table 1. Eigenvalues of additive genetic and fattening farm covariance matrices for each trait

Traits	Eigenvalues of additive genetic covariance matrices					Eigenvalues of fattening farm covariance matrices					
	First ((%) ^a second	(%)	Third	(%)	First	(%)	second	(%)	Third	(%)
MS	3.007 ((97.9) 0.055	(1.8)	0.009	(0.3)	0.713	(83.3)	0.118	(13.7)	0.025	(2.9)
FAR	37.738 ((97.6) 0.713	(1.8)	0.233	(0.6)	7.390	(81.8)	1.148	(12.7)	0.493	(5.5)
OCM	11.868 ((95.3) 0.517	(4.1)	0.070	(0.6)	1.822	(90.1)	0.118	(5.9)	0.081	(4.0)

^a Percentage of the total eigenvalue.

Table 2. Estimates of additive genetic (co)variance from quadratic random regression model

	Addi	Additive genetic variance			Fattening farm variance			
	Intercept	Linear	Quadratic	Intercept	Linear	Quadratic		
MS								
Intercept	2.994			0.690				
Linear	-0.155	0.033		-0.049	0.122			
Quadratic	-0.125	-0.015	0.045	-0.112	0.006	0.044		
FAR								
Intercept	37.661			7.254				
Linear	1.638	0.581		-0.829	1.26			
Quadratic	0.399	0.242	0.471	-0.397	0.097	0.520		
OCM								
Intercept	11.721			1.799				
Linear	-0.751	0.198		-0.167	0.135			
Quadratic	-1.064	-0.103	0.535	-0.104	0.009	0.087		