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ABSTRACT

There is an increased interest in estimating tlgvériance components of additive
animal models with direct and competition effecddMC). However, all attempts to
estimate the dispersion parameters in differentahispecies faced problems of
convergence and highly variable estimates. Thebteois related with the lack of
asymptotic identifiability in certain AMC. This pperty is observed when calculating
the 4 x 4 information matrixl (0)) for the AMC REML likelihood, and its smallest
eigenvalue goes to zero. The singularity @) is due to confounding between the fixed
pen (contemporary group) effect and the additivenpetition effects. The incidence
matrix of additive competition effect€) can be written as a function of the “intensity
of competition” (IC) among animals in a contempgrgroup. The IC values can be
interpreted as weighting factors expressing hownsé pairs of animals compete in
relation to all other animals. The sum of squarkshe IC values in any row of
should add up to 1 (standardization) in order Fer phenotypic variance of any given
observation not to be affected by the number of patitors. Moreover, data sets to
estimate the (co)variance components in the AMQikshbe obtained with some sort of
design in order for the (co)variance componentshéoasymptotically identifiable.
Examples are presented in which the IC’s are mlate either time or number of
competitors in the pen.
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Introduction

Recently, there has been a growing interest ine@enevaluation models
including additive genetic effects of competitidkMC). Although quantitative genetics
theory dealing with interacting effects in plantsdaanimals dates back to Griffing
(1967), it is only recently (Muir, 2005; Van Vled@dnd Cassady, 2005; Arango et al,
2005; Cappa and Cantet, 2007) that competitiorcesfieave been introduced in genetic
evaluation using a mixed model framework. The appEAMC models relates to the
increase in either total performance, or animallveahg, if genetic competition effects
are selected against (Muir, 2005; Van Vleck ands@dg, 2005).

A major drawback with the AMC in animals is thdlitraported estimates of the
dispersion parameters seem to suffer from eittaaaracy or problems of convergence
of the (co)variance components (Van Vleck and Ghgsa005; Arango et al, 2005;
Van Vleck et al, 2007). These problems have nonhlseserved when estimating the
(co)variance components in an individual tree m@@alppa and Cantet, 2007). There is
a major difference between the later estimatebded parameter estimates with animals
in the elements of the incidence matrix for thed@n additive competition effectZd).
The objective of this presentation is to show, kgywf simple examples, the role of
matrix Z. in the identifiability of the (co)variance compate in AMC. A second goal
is to display the effects of the distribution oéthdditive relationships of animals across
pens on the asymptotic variance of the estimatguedsion parameters.

Theory
The equation for the animal model with competitgdfects is as follows:
y=Xp +Z,8+Zg+e [1]

wherey is then x 1 vector of recordsX is a full rankn x p incidence matrix that relates
the observations to the vector of fixed effddtsande (n x 1) is the random vector of
i.i.d. errors distributed as, (0, I, 0%), beingo®e the error variance. The vector of direct
breeding values igq and the vector of breeding values for competigtfacts isa.. We
assume that the sangeindividuals inag have competition breeding valuesay and
that individual breeding values are ordered by datarth the same way in both vectors.
Direct and competition breeding values are relavedby then x g incidence matrices
Zy4 andZ., respectively. Each row &y has all elements equal to 0 except for a 1 in the
column belonging t@g. Matrix Z. is described in detail below. The variances foedd
and competition breeding values afeq ando?®ac, respectively, whereas the covariance
between both types of additive effectoigiac. Also, letA be theq x q relation matrix
with diagonal elements equal to T with F; being the inbreeding coefficient pfand
off-diagonals elements equal to the additive refeghipsA;;. Now, we are able to write
the total additive covariance matrix in a more cantpnanner as follows

2
Var{a"} = { Ond GA;‘\C} OA=G,0A
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Taking into account the random effects in mode] {i¢ (co)variance matrin/g of y is

given by:



V =Z,AZ,0% +(Z,AZ, + Z,AZ,)0 . +ZAZ0h, + 1,07 [1B]

Key elements in model [1] are the non-zero elemehtaatrix Z.. We writeag for the
breeding value of competition effects of animaCappa and Cantet (2007) observed
that the total additive genetic competition thateiserted over individual from
competitorgy, jo, ..., jm Can be written as

m
foa, + foa, +.+ fina =D fa [2]
=1

The f;; elements in [2] are interpreted as fimgensities of competition (IC) that the
breeding values df;, j,..., jm €xert over the phenotype Dfyi.j.). To obtain the IC
values, Cappa and Cantet (2007) considered thtteirabsence of inbreeding and of
genetic relationships among competitors and regasdbf the number of competing
animals, the variance of the breeding values otttimapetitors in the observation iofs
equal to

m
Var(z fa, J =02, [3]
i=1

This implies that the potential genetic strengil (or competing withm animals is
split m times. Cappa and Cantet (2007) observed further twoobtain the IC for
competing trees planted in a regular grid. Whichelie source of competition is, note
that

dl m
Var(z fia ] = (z fi jcic [4]
j=1 =

As the variance of any breeding value is (E}to®a (Kempthorne, 1969, page 349),
when inbreeding is nulK = 0) expression [4] implies that

m
J.Z::l fix =1 [5]

Thus, to standardize the variance of the breedalges for competition effects in the
phenotypic variance of any animakthefjj's of its competitors should be chosen so that
the sums of squares of the IC values add up to 1.

We now show how thé§;'s can be calculated. Suppose the intensity of editipn is
related to thdime the animals spend together in the pen. Thus, sodieduals may
spend the entire post weaning period in the sanme while others may be rotated
among pens durinm periods. As in crossover designs (Bate and J@U€}5), animals
are assigned tsequences of occupancy times of the pens. For examplenfer 3, the
sequence 1-2-1 means that the animals spent theériod in pen 1, the second in pen
2, and finally the individual goes back to pen tiwnly the third period. Two individuals
in the sequence 1-1-1 compete all the time. Howenmmnpetition of an animal in 1-1-1
with another individual assigned to sequence 14i2-1wo third as intense as the
competition with an animal in the same sequence dimmount of time spent in any
period does not have to be equal to the previotisgse but each change of pen should
be counted as a new period. The idea is to cateuls IC as a function of the total
proportion of shared time. By letting to be the number of competitors of animal
during sequenclk we have that

m
Var(Z f, acj]=(nl f2+.4n f2+ .40 £2)0h [6]
=1



By equating [4] to [6], the ICs are such that

1= %f”i:nl 24,40 f2+ .40, 2 [7]
To solve [7] we have to use the relationships am@sgbased on the fraction of time
animals were competing. For the example above withsequenced;, = (2/3)f11, as

an animal in the 1-1-1 pattern compete one thirdth&f time more with another
individual in the same sequence, as compared wittaramal in the 1-2-1 pattern.
Suppose there are 2 animals in sequence 1-1-1 angdefjuence 1-2-1, then expression
[7] for an animal in sequence 1-1-1 is equai%a + 4f %, = 1. On replacing in the last
expression withy, = (2/3)f11, we havef %1 + 4 [(2/3)f14]% = 1, with solutions equal to
f11 = 3/5 andf, =2/5. For an individual in sequence 1-2-1, [7hisv equal to 2%, + 3

f 25, = 1 with the restriction thatf,; = (2/3) f,,, and the solution i, = Y and fp;

= %% By letting the records of animals in the 1-1-fjisnce to come first than those
from animals of the sequence 1-2-1, ma#ixs then equal to
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This type of structure iZ. allows a feasible estimation of the variance congmbs, as
we discuss below.

Identifiability of the variance components

Let 6 = [6;] be the parametric vector of the (co)variance congmts = 1, ..,k) of a
mixed model, and/,...,Vi ,..., Vk the associated (co)variance structures, so thgyVa
= V1 01+ V20, + ... + V0O Jiang (1996) defined that a mixed model is ideitie of
its (co)variance components under the translatiwariance class (IDI), if: 1) matrices
V1, V2 ... Vg are linearly independent; 2) there exists a m&rsuch thaPX = 0 and
rank[P] = n - rank[X]. The matrix with such propertiesB=V *-v 1 X (X 'v 7
X) ™t X V ! (Harville, 1977). Jiang (1996, lemma 4.1) furthéserved that a mixed
model belong to the IDI class, if and only if, thmallest eigenvalue of the REML
information matrix [(0)) is positive. As the inverse of the informatioratnix is the
asymptotic covariance matrix of REML estimates (eat al, 1992), the previous
statement is tantamount t¢0) being positive definite, or equivalently, adnmgi an
inverse. This property becomes useful to check kndrehe (co)variance components in
model [1] are identifiable. The expression for ttjeelement ofl (0) (Harville, 1977,
page 326) is

_ o _ 9oV )_
1, (8)= tr(P Y = a—ej]—tr(P V, P V) 8]

For model [1]I(0) is 4 x 4V = Z4AZy, Vo = ZgAZ + ZAZy, V3 = ZAZS, andV, =
I .. Diagonal elements are
1,,(8)= tr(P Z,AZ,'P Z,AZ,"),



1,,(8)= tr[P(Z,AZ)+Z AZ,')P (Z,AZ,/+Z,AZ,")] [9]
15(0)= tr(P Z,AZ,'P Z,AZ,') 1,,(8)=tr(PP).
Whereas off-diagonal elements are
1,(8)= tr[PZ,AZ,'P (Z,AZ+Z.AZ,')],
1;(0)= r[PZ,AZ'P Z.AZ]1,(0)= tr(PZ,AZ,P)  [10]

1,,(8)= tr[ P (Z,AZ,+Z AZ,')PZAZ]
1,,(0)= tr[ P (Z,AZ+ZAZ,)P] 1,,(0)= tr[PZ,AZ P]

Harville (1977) showed how to write down the eletseaf 1(0) in terms of matrices

related to the mixed model equations of Henderd®84). Boca and Cantet (2004)
used this approach to calculate asymptotic varenE&EML estimates from an animal
model with additive and dominance effects. To dedh small examples, we will

calculatel (8) using expressions [9] and [10] to, in order todfiout whether a given

experimental design allows estimating separatedyfalr (co)variance components.

To get insight into howl (0) helps to identify the (co)variance components,
consider first the simple additive animal modelhndirect effects only and homogeneous
error variance. Thg0) is now of order Z 2 and equal to

{oi} {tr[PZ AZ'PZAZ] u[PZ AZ'P]} 1)

o’| | w[PzAZ'P| tr[ P P

When there arg unrelated individuals each one having one record], andA = 4. All
assumptions considered, the covariance matrixeofittia is equal to:

V=ZAZ'ch +l o2 =l (0} +0l)

and the information matrix in [11] is

| {oi} {tr[P P tr[P P]}

c2| |tr[PP] tr[PF

e

As all the elements df(0) are equal, the matrix is singular. This, in tungicates that
there is not enough information in the data stmecta estimates> and 62 separately.



Designs for identifying the (co)variance components in models with competition

In this section we will give simple examples shogvthe difficulties involved in
estimating all four (co)variance components fromdeid1]. Consider first the example
given by Muir (2005). There are 8 individuals widhata divided equally into 2 pens.
Moreover, all animal in each pen are full-sibs aadh animal in any pen is a half-sib of
any animal in the other pen. For simplicity,dé} = 63 .= 62= 1 andc,, = -0.25.

Using the specification for [1] as in Muir (200B)atricesX, Z4 andZ. are respectively
equal to

[12]
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whereas the additive relationship matrix is

1 05 05 05 025 025 025 0.%
05 1 05 05 025 025 025 0.
05 05 1 05 025 025 025 0.
05 05 05 1 025 025 025 0.z
0.25 0.25 025 025 1 05 05 O0f
025 025 025 025 05 1 05 Of
025 025 025 025 0O5 05 1 Of

1025 025 025 02505 05 05 1

The eigenvalues df0) are 2.97, 1.52, 0, and 0O; therefore, the masrisingular and not
all dispersion parameters can be separately esttmaliternatively, suppose that pens
are divided in halves with a central feeder shdrga@ll animals in the pen. Now, it is
reasonable to assume that the intensity of connpetibr animals in the same half-pen
is greater than the one among individuals in défifiérhalves. For any animal in a half-
pen expression [7] is equal t6,, + 2f %, = 1. Assuming than competition between the
two pigs in the same half-pen is twice as intersswigh the two pigs in the other half-
pen, we can pose the restriction thiat= 2f;,. After solving we obtairfy; = [2, andf;,

= /% . For the other pen with animals 5 to 8, individu&land 8 remains in the same

half-pen during the entire feeding period (sequehdg, whereas 6 and 7 switch half-
pens at the middle of the trial (sequence 1-2). [Owefor animal 5 are such thefsg + f
%57+ f %55= 1 with the restriction thdts = fs7= 2fsg, as 5 (1-1) compete with 8 (2-2) less
than with 6 or 7 that are in the sequences 1-2-br Qolutions ardsg = 2,andfsg =%,

so that matriXZ. is then equal to



[0 [ % % 0 0 0 0
% 0 [% % 0 0 0 O
% % 0 [z 0 0 0 O
7 | K B 0 0000 13
0 0 0 0 037 ¥% %
0 0 0 0% 0¥ %
0 0 0 0 % % 0 7
0 0 0 0 ¥ % 7 O

Now 1(8) is non-singular with eigenvalues 2.81, 2.02, Ddd 3.86x108. Notice that
the last eigenvalue is very small, which in turdicates large asymptotic variances of
the REML estimates when analyzing data with thEgle

Can the asymptotic variances be improved upon? fussibility is to use
another ‘genetic design’, thus modifying tAematrix. Suppose that 4 families with 2

1 05
full-sibs each are available so thet |, [ {O 5 1}, and matriceX, Zq andZ; are

the same as before. Then, the eigenvalues of shdtireyl(8) are 2.64, 1.72, 0.28, and
0.12. A useful criterion to compare the efficiermydifferent experimental designs is
D-optimality (Wald, 1943), and amounts to maximizihg determinant af(@) (|l (6)|).
The value ofl0)| for the design with the genetic structure usgiir (2005) is equal

to 3.86x10°, whereas for the design with 4 families of 2 &ilbs each and animals
distributed across sub-peh@)| = 0.159. This is a difference in efficiency obra than
4111 times (0.1591/3.86xTP Though the example may seem atrtificial, it sert@
illustrate two facts: 1) if pen is a fixed effect the model, animals in the same pen
should have different ICs in order for the covacmmomponents to be identifiable; 2)
the distribution of families of full and half sila&€ross pens plays a role in the efficiency
of the design. Further examples are two alternatieethe design witiZ; as in [13],
keeping X, Z4 and A as before. Notice thaZ. has diagonal blocks with different
structure. In the first design, animals are noated across half-pens but stay in the
same half-pen during the entire feeding period /gt2). Then, matrixZ. is block-
diagonal with the same structure as in the uppeckbbf [13]. In the other design
animals in both pens are rotated across half-pettseeamiddle of the period (1-2/2-1),
so thatZ. is block-diagonal with the same structure as enldwer block of [13]. Then,
[[(8)] = 0.178 for 1-1/2-2 design, arld@d)| = 0.119 for the 1-2/2-1 design. Thus, the 1-
1/2-2 design was 12% more efficient than 1-1/1#] almost 50% more efficient than
the 1-2/2-1 design.

Discussion

While data structures used here are small and wbatecomplex, they serve to
illustrate the problem of estimating (co)variancemponents in models with
competition effects. Any data set used for estingatihe dispersion parameters will
suffer from lack of identifiability when all anim&lin the same pen share the same IC
factor and pen is treated as a fixed effect. Additielationships may ameliorate the

problem but one has to go to the trouble of catgd (0) to be sure all (co)variance



components are identifiable. In turn, distributiohfamilies across pens or half-pens
will affect the asymptotic variances of the dispangparameters.
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