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ABSTRACT 

There is an increased interest in estimating the (co)variance components of additive 
animal models with direct and competition effects (AMC). However, all attempts to 
estimate the dispersion parameters in different animal species faced problems of 
convergence and highly variable estimates. The trouble is related with the lack of 
asymptotic identifiability in certain AMC. This property is observed when calculating 
the 4 × 4 information matrix (I (θ)) for the AMC REML likelihood, and its smallest 
eigenvalue goes to zero. The singularity of I (θ) is due to confounding between the fixed 
pen (contemporary group) effect and the additive competition effects. The incidence 
matrix of additive competition effects (Zc) can be written as a function of the “intensity 
of competition” (IC) among animals in a contemporary group. The IC values can be 
interpreted as weighting factors expressing how intense pairs of animals compete in 
relation to all other animals. The sum of squares of the IC values in any row of Zc 
should add up to 1 (standardization) in order for the phenotypic variance of any given 
observation not to be affected by the number of competitors. Moreover, data sets to 
estimate the (co)variance components in the AMC should be obtained with some sort of 
design in order for the (co)variance components to be asymptotically identifiable. 
Examples are presented in which the IC’s are related to either time or number of 
competitors in the pen.  
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Introduction 

 Recently, there has been a growing interest in genetic evaluation models 
including additive genetic effects of competition (AMC). Although quantitative genetics 
theory dealing with interacting effects in plants and animals dates back to Griffing 
(1967), it is only recently (Muir, 2005; Van Vleck and Cassady, 2005; Arango et al, 
2005; Cappa and Cantet, 2007) that competition effects have been introduced in genetic 
evaluation using a mixed model framework. The appeal of AMC models relates to the 
increase in either total performance, or animal wellbeing, if genetic competition effects 
are selected against (Muir, 2005; Van Vleck and Cassady, 2005). 

 A major drawback with the AMC in animals is that all reported estimates of the 
dispersion parameters seem to suffer from either inaccuracy or problems of convergence 
of the (co)variance components (Van Vleck and Cassady, 2005; Arango et al, 2005; 
Van Vleck et al, 2007). These problems have not been observed when estimating the 
(co)variance components in an individual tree model (Cappa and Cantet, 2007). There is 
a major difference between the later estimates to those parameter estimates with animals 
in the elements of the incidence matrix for the random additive competition effects (Zc). 
The objective of this presentation is to show, by way of simple examples, the role of 
matrix Zc in the identifiability of the (co)variance components in AMC. A second goal 
is to display the effects of the distribution of the additive relationships of animals across 
pens on the asymptotic variance of the estimated dispersion parameters. 

 

Theory 
The equation for the animal model with competition effects is as follows:   

d d c c= + + +y X Z a Z a eβ      [1] 

where y is the n × 1 vector of records; X is a full rank n × p incidence matrix that relates 
the observations to the vector of fixed effects ββββ, and e (n × 1) is the random vector of 
i.i.d. errors distributed as Nn (0, In σ2

e), being σ2
e the error variance. The vector of direct 

breeding values is ad and the vector of breeding values for competition effects is ac. We 
assume that the same q individuals in ad have competition breeding values in ac, and 
that individual breeding values are ordered by date of birth the same way in both vectors. 
Direct and competition breeding values are related to y by the n × q incidence matrices 
Zd and Zc, respectively. Each row of Zd has all elements equal to 0 except for a 1 in the 
column belonging to adi. Matrix Zc is described in detail below. The variances for direct 
and competition breeding values are σ2

Ad and σ2
Ac, respectively, whereas the covariance 

between both types of additive effects is σAdAc. Also, let A be the q × q relation matrix 
with diagonal elements equal to 1 + Fi, with Fi being the inbreeding coefficient of i, and 
off-diagonals elements equal to the additive relationships Aij.  Now, we are able to write 
the total additive covariance matrix in a more compact manner as follows 
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Taking into account the random effects in model [1], the (co)variance matrix (V) of y is 
given by: 
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( )2 2
A A A A

2
d d d d c c d d c c c c n e= + + + +´ ´ ´ ´V Z AZ Z A Z Z A Z Z AZ Iσ σ σ σ   [1B] 

Key elements in model [1] are the non-zero elements of matrix Zc. We write acj for the 
breeding value of competition effects of animal j. Cappa and Cantet (2007) observed 
that the total additive genetic competition that is exerted over individual i from 
competitors j1, j2, …, jmi can be written as 

1 21 2
1

...
i

m j

m

i c i c im c ij c
j

f f f f
=

+ + + =∑a a a a    [2] 

The fij elements in [2] are interpreted as the intensities of competition (IC) that the 
breeding values of j1, j2,…, jm exert over the phenotype of i (yij1..jm). To obtain the IC 
values, Cappa and Cantet (2007) considered that in the absence of inbreeding and of 
genetic relationships among competitors and regardless of the number of competing 
animals, the variance of the breeding values of the competitors in the observation of i is 
equal to 

Ac
1

Var
i

j

m

ij c
j

f
=

 
= 

 
∑ a 2σ      [3] 

This implies that the potential genetic strength (ac) for competing with mi animals is 
split mi times. Cappa and Cantet (2007) observed further how to obtain the IC for 
competing trees planted in a regular grid. Whichever the source of competition is, note 
that  
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As the variance of any breeding value is (1 + F) σ2
A (Kempthorne, 1969, page 349), 

when inbreeding is null (F = 0) expression [4] implies that  
2

1
1

im

ijk
j

f
=

=∑      [5] 

Thus, to standardize the variance of the breeding values for competition effects in the 
phenotypic variance of any animal i, the fij’s of its competitors should be chosen so that 
the sums of squares of the IC values add up to 1.  
We now show how the fij’s can be calculated. Suppose the intensity of competition is 
related to the time the animals spend together in the pen. Thus, some individuals may 
spend the entire post weaning period in the same pen, while others may be rotated 
among pens during m periods. As in crossover designs (Bate and Jones, 2006), animals 
are assigned to sequences of occupancy times of the pens. For example, for m = 3, the 
sequence 1-2-1 means that the animals spent the first period in pen 1, the second in pen 
2, and finally the individual goes back to pen 1 during the third period. Two individuals 
in the sequence 1-1-1 compete all the time. However, competition of an animal in 1-1-1 
with another individual assigned to sequence 1-2-1 is two third as intense as the 
competition with an animal in the same sequence. The amount of time spent in any 
period does not have to be equal to the previous periods, but each change of pen should 
be counted as a new period. The idea is to calculate the IC as a function of the total 
proportion of shared time. By letting nk to be the number of competitors of animal i 
during sequence k, we have that  

( )2 2 2
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By equating [4] to [6], the ICs are such that 
2 2 2 2

1 1
1

1 ... ...
i

i i

m

ijk i k ik m i m
j

f n f n f n f
=

= = + + + +∑    [7] 

To solve [7] we have to use the relationships among ICs based on the fraction of time 
animals were competing. For the example above with two sequences, f12 = (2/3) f11, as 
an animal in the 1-1-1 pattern compete one third of the time more with another 
individual in the same sequence, as compared with an animal in the 1-2-1 pattern. 
Suppose there are 2 animals in sequence 1-1-1 and 4 in sequence 1-2-1, then expression 
[7] for an animal in sequence 1-1-1 is equal to f 211 + 4 f 212 = 1. On replacing in the last 
expression with f12 = (2/3) f11, we have f 2

11 + 4 [(2/3) f11]
2 = 1, with solutions equal to 

f11 = 3/5 and f12 =2/5. For an individual in sequence 1-2-1, [7] is now equal to 2 f 221 + 3 
f 2

22 = 1 with the restriction that  f21 = (2/3) f22, and the solution is f22 = 3
35

and f21 

= 2
35 . By letting the records of animals in the 1-1-1 sequence to come first than those 

from animals of the sequence 1-2-1, matrix Zc is then equal to 
3 2 2 2 2

5 5 5 5 5

3 2 2 2 2
5 5 5 5 5

3 3 32 2
35 35 3535 35

3 3 32 2
35 35 3535 35

3 3 32 2
35 35 3535 35

3 3 32 2
35 35 3535 35

0

0

0

0

0

0

c

 
 
 
 
 =
 
 
 
 
 

Z  

This type of structure in Zc allows a feasible estimation of the variance components, as 
we discuss below. 
  
Identifiability of the variance components 
Let θ = [θi] be the parametric vector of the (co)variance components (i = 1, .., k) of a 
mixed model, and V1,…,Vi ,…, Vk the associated (co)variance structures, so that Var(y) 
= V1 θ1+ V2 θ2 + … + Vk θk. Jiang (1996) defined that a mixed model is identifiable of 
its (co)variance components under the translation invariance class (IDI), if: 1) matrices 
V1 , V2 , … Vk are linearly independent; 2) there exists a matrix P such that PX = 0 and 
rank[P] = n − rank[X]. The matrix with such properties is P = V −1 − V −1 X (X ’V −1 
X) −1 X V −1 (Harville, 1977). Jiang (1996, lemma 4.1) further observed that a mixed 
model belong to the IDI class, if and only if, the smallest eigenvalue of the REML 
information matrix (I (θ)) is positive. As the inverse of the information matrix is the 
asymptotic covariance matrix of REML estimates (Searle et al, 1992), the previous 
statement is tantamount to I (θ) being positive definite, or equivalently, admitting an 
inverse. This property becomes useful to check whether the (co)variance components in 
model [1] are identifiable. The expression for the i,j element of I (θ) (Harville, 1977, 
page 326) is 

( ) ( ) 
tr   tr   

  ij i j
i j

 =    
 ∂ ∂ =  ∂ ∂ 

V V
I P P P V P V

θ θ
θθθθ   [8] 

For model [1] I (θ) is 4 × 4, V1 = ZdAZd’, V2 = ZdAZc’+  ZcAZd’, V3 = ZcAZc’, and V4 = 
I n. Diagonal elements are 

( ) ( )11 tr  '  'd d d d =  I P Z A Z P Z A Zθθθθ , 
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( ) ( ) ( )22 tr ' '  ' 'd c c d d c c d =  + +  I P Z A Z Z A Z P Z A Z Z A Zθθθθ   [9] 

( ) ( )33 tr  '  'c c c c =  I P Z A Z P Z A Zθθθθ             ( ) ( )44 tr  = I P Pθθθθ . 

Whereas off-diagonal elements are  

( ) ( )12 tr '  ' 'd d d c c d =  +  I P Z A Z P Z A Z Z A Zθθθθ , 

( ) [ ]13 tr '  'd d c c =  I P Z A Z P Z A Zθθθθ ( ) ( )14 tr  'd d =  I P Z A Z Pθθθθ  [10] 

( ) ( )23 tr  ' ' 'd c c d c c =  +  I P Z A Z Z A Z P Z A Zθθθθ

( ) ( )24 tr  ' 'd c c d =  +  I P Z A Z Z A Z Pθθθθ   ( ) [ ]34 tr 'c c =  I P Z A Z Pθθθθ  

Harville (1977) showed how to write down the elements of I (θ) in terms of matrices 
related to the mixed model equations of Henderson (1984). Boca and Cantet (2004) 
used this approach to calculate asymptotic variances of REML estimates from an animal 
model with additive and dominance effects. To deal with small examples, we will 
calculate I (θ) using expressions [9] and [10] to, in order to find out whether a given 
experimental design allows estimating separately the four (co)variance components. 

 To get insight into how I (θ) helps to identify the (co)variance components, 
consider first the simple additive animal model with direct effects only and homogeneous 
error variance. The I (θ) is now of order 2 H 2 and equal to 

[ ] [ ]
[ ] [ ]

2
A
2

tr ' ' tr '

tr ' tr e

 =  
  
  

   

P Z A Z P Z A Z P Z A Z P
I

P Z A Z P P P

σ

σ
  [11] 

When there are q unrelated individuals each one having one record, Z = Iq and A = Iq. All 
assumptions considered, the covariance matrix of the data is equal to: 

( )2 2 2 2
A A = '  +   =   + e eV Z A Z I Iσ σ σ σ  

and the information matrix in [11] is 

[ ] [ ]
[ ] [ ]

2
A
2

tr tr 

tr tr e

 =  
  
  

   

P P P P
I

P P P P

σ

σ
 

As all the elements of I (θ) are equal, the matrix is singular. This, in turn, indicates that 
there is not enough information in the data structure to estimate 2

Aσ and 2
eσ separately. 
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Designs for identifying the (co)variance components in models with competition 

 In this section we will give simple examples showing the difficulties involved in 
estimating all four (co)variance components from model [1]. Consider first the example 
given by Muir (2005). There are 8 individuals with data divided equally into 2 pens. 
Moreover, all animal in each pen are full-sibs and each animal in any pen is a half-sib of 
any animal in the other pen. For simplicity, letAd

2σ = Ac
2σ = e

2σ = 1 and A Ad cσ = −0.25. 

Using the specification for [1] as in Muir (2005), matrices X, Zd and Zc are respectively 
equal to 

8

1 0 0 1 1 1 0 0 0 0

1 0 1 0 1 1 0 0 0 0

1 0 1 1 0 1 0 0 0 0

1 0 1 1 1 0 0 0 0 0

0 1 0 0 0 0 0 1 1 1

0 1 0 0 0 0 1 0 1 1

0 1 0 0 0 0 1 1 0 1

0 1 0 0 0 0 1 1 1 0

d c

   
   
   
   
   
   
   
   
   
   
   
      

X = Z = I Z =  [12] 

whereas the additive relationship matrix is 

1 0.5 0.5 0.5 0.25 0.25 0.25 0.25

0.5 1 0.5 0.5 0.25 0.25 0.25 0.25

0.5 0.5 1 0.5 0.25 0.25 0.25 0.25

0.5 0.5 0.5 1 0.25 0.25 0.25 0.25

0.25 0.25 0.25 0.25 1 0.5 0.5 0.5

0.25 0.25 0.25 0.25 0.5 1 0.5 0.5

0.25 0.25 0.25 0.25 0.5 0.5 1 0.5

0.25 0.25 0.25 0.25

A =

0.5 0.5 0.5 1

 
 
 
 
 
 
 
 
 
 
 
  

 

The eigenvalues of I (θθθθ) are 2.97, 1.52, 0, and 0; therefore, the matrix is singular and not 
all dispersion parameters can be separately estimated. Alternatively, suppose that pens 
are divided in halves with a central feeder shared by all animals in the pen. Now, it is 
reasonable to assume that the intensity of competition for animals in the same half-pen 
is greater than the one among individuals in different halves. For any animal in a half-
pen expression [7] is equal to f 212 + 2 f 212 = 1. Assuming than competition between the 
two pigs in the same half-pen is twice as intense as with the two pigs in the other half-
pen, we can pose the restriction that  f11 = 2 f12. After solving we obtain f11 = 2

3  and f12 

= 1
6 . For the other pen with animals 5 to 8, individuals 5 and 8 remains in the same 

half-pen during the entire feeding period (sequence 1-1), whereas 6 and 7 switch half-
pens at the middle of the trial (sequence 1-2). The ICs for animal 5 are such that f 256 + f 
2
57 + f 258 = 1 with the restriction that f56 = f57 = 2f58, as 5 (1-1) compete with 8 (2-2) less 

than with 6 or 7 that are in the sequences 1-2 or 2-1. Solutions are f56 = 2
3 and f58 = 1

3 , 
so that matrix Zc is then equal to 
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2 1 1
3 6 6

2 1 2
3 6 3

1 1 2
6 6 3

1 1 2
6 6 3

2 1 1
3 3 3

2 1 1
3 3 3

1 1 2
3 3 3

1 1 2
3 3 3

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

c

 
 
 
 
 
 =
 
 
 
 
 
  

Z    [13] 

Now I (θθθθ) is non-singular with eigenvalues 2.81, 2.02, 0.17, and 3.86×10-5. Notice that 
the last eigenvalue is very small, which in turn indicates large asymptotic variances of 
the REML estimates when analyzing data with this design.  
 Can the asymptotic variances be improved upon? One possibility is to use 
another ‘genetic design’, thus modifying the A matrix. Suppose that 4 families with 2 

full-sibs each are available so that 2

1 0.5

0.5 1

 
⊗  
 

A = I , and matrices X, Zd and Zc are 

the same as before. Then, the eigenvalues of the resulting I (θθθθ) are 2.64, 1.72, 0.28, and 
0.12. A useful criterion to compare the efficiency of different experimental designs is 
D-optimality (Wald, 1943), and amounts to maximizing the determinant of I (θθθθ) (|I (θθθθ)|). 
The value of |I (θθθθ)| for the design with the genetic structure used by Muir (2005) is equal 
to 3.86×10-5, whereas for the design with 4 families of 2 full-sibs each and animals 
distributed across sub-pens |I (θθθθ)| = 0.159. This is a difference in efficiency of more than 
4111 times (0.1591/3.86×10-5). Though the example may seem artificial, it serves to 
illustrate two facts: 1) if pen is a fixed effect in the model, animals in the same pen 
should have different ICs in order for the covariance components to be identifiable; 2) 
the distribution of families of full and half sibs across pens plays a role in the efficiency 
of the design. Further examples are two alternatives to the design with Zc as in [13], 
keeping X, Zd and A as before. Notice that Zc has diagonal blocks with different 
structure. In the first design, animals are not rotated across half-pens but stay in the 
same half-pen during the entire feeding period (1-1/2-2). Then, matrix Zc is block-
diagonal with the same structure as in the upper block of [13]. In the other design 
animals in both pens are rotated across half-pens at the middle of the period (1-2/2-1), 
so that Zc is block-diagonal with the same structure as in the lower block of [13]. Then, 
|I (θθθθ)| = 0.178 for 1-1/2-2 design, and |I (θθθθ)| = 0.119 for the 1-2/2-1 design. Thus, the 1-
1/2-2 design was 12% more efficient than 1-1/1-2, and almost 50% more efficient than 
the 1-2/2-1 design.   

Discussion 

 While data structures used here are small and somewhat complex, they serve to 
illustrate the problem of estimating (co)variance components in models with 
competition effects. Any data set used for estimating the dispersion parameters will 
suffer from lack of identifiability when all animals in the same pen share the same IC 
factor and pen is treated as a fixed effect. Additive relationships may ameliorate the 

problem but one has to go to the trouble of calculating I (θθθθ) to be sure all (co)variance 
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components are identifiable. In turn, distribution of families across pens or half-pens 
will affect the asymptotic variances of the dispersion parameters. 
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