Assessment of Heterogeneity of Residual Variances in an Autoregressive Test-Day Multiple Lactations Model U.PORTO

NSTITUTO DE CIÊNCIAS BIOMÉDICAS ABEL SA INIVERSIDADE DO PORTO

J. Vasconcelos, A. Martins, A. Ferreira and J. Carvalheira

Introduction

Numerous studies (Meuwissen and Van der Werf, 1993; Ibáñez et al., 1999; Rekaya et al., 2000; López-Romero et al., 2003) have reported heterogeneous (HE) genetic, residual and permanent environmental variances for production traits.

•Ignoring heterogeneity of variances may affect genetic progress (Robert-Granié et al. 1999; Ibáñez et al., 1999; Rekaya et al., 2000; López-Romero et al., 2003). •Most studies using TD animal models recommend that HE sources of variance should be accounted with especial concern to residual variances (Rekaya et al., 2000; López-Romero et al., 2003).

-López-Romero et al, (2003) studying first lactation TD records with a random regression model, found significant reductions in the residual variances (RV) at the beginning and at the end of the lactation when a 5th order polynomial sub model was

Objectives

To assess heterogeneity of RV across L, 5 random samples of the Portuguese Holstein milk database were extracted and analyzed by autoregressive test-day animal (ARTD) models differing on the RV structure (HO vs. HE).

Dara

	Sample				
	1	2	3	4	5
No. of Animels	13,270	10,743	9,509	10,239	9,408
Animals w/records	7,625	5,757	5,156	5,161	4,955
TD observations	127,407	97,342	91,010	78,014	88,163
1st Lactation:					
Animals w/records	6,542	4,843	4,356	4,189	4,257
TD observations	56,811	42,317	37,992	34,657	37,348
Average TD/Animal	9	9	9	8	9
2nd Lastation:					
Animals w/records	5,098	3,868	3,581	3,266	3,513
TD observations	42,916	32,995	30,675	26,614	30,362
Average TD/Animal	8	9	9	8	9
3rd Lastation:					
Animals w/records	3,329	2,644	2,656	2,254	2,441
TD observations	27,680	22,030	22,343	16,743	20,453
Average TD/Animal	8	8	8	8	8

The ARTD Model

•The autoregressive test-day animal model (ARTD) is a class of TD models where the

$y_{ijLkmn} = HTD + Age_{ij} + DIM_{Lk} + a_m + p_{Lm} + i_{Lmn} + a_{ijLkmn}$

•	FID - Fierd ID,

Results and Discussion

Sample	LRT	P
1	77.599	< 0.0005
2	9.510	< 0.01
3	124.879	< 0.0005
4	37.691	< 0.0005
5	62.531	< 0.0005

Heterogeneous RV

Table 3. (Co)variance com	iponents (kg²)	, autocorrelations and	heritabilities
--------------	---------------	----------------	------------------------	----------------

Denemoter	Average Components				
Parameter	Heterogeneous RV	/ Homogeneous RV			
var(G)	7.942	7.901			
var(LTE)	<0.001	<0,001			
corr(LTE)	<0.001	<0,001			
var(e1)	3,572	3.967			
var(e2)	4.448				
var(e3)	4.989				
var(STE1)	12.970	12.793			
corr(STE1)	0.805	0.823			
var(STE2)	25,534	25.837			
corr(STE2)	0.834	0,822			
ver(STE3)	28,862	29,518			
corr(STE3)	0.837	0.812			
Heritability(L1)	0.324	0,322			
Heritability(L2)	0.209	0,21			
Heritability(L3)	0,190	0,192			

	Heterogeneous				
		EBV	PEV	ACC	Rank
	EBV	0.999	-	-	-
Homesones	PEV	-	0.999	-	-
Homogeneous	ACC	-	-	0.999	-
	Rank	_	-	-	0.999

Table 5. Average Differences (Heterogeneous vs. Homogeneous RV)

Parameter	N	Mean	STD	Ρ
EBV	53,169	-0.0003	0.0344	= 0.06
PEV	337	-0.0021	0.0077	< 0.0001
ACC	337	0.0009	0.0007	< 0.0001

 $\boldsymbol{\cdot} \mathsf{Differences}$ between EBV were on average not significant. On the other hand, differences among PEV and ACC favoured the HE RV model, implying greater potential for genetic progress.