Genetic Parameters of the Major Fatty Acid (FA) Contents in Cow Milk

H. Soyeurt ^{1,2}, A. Gillon ¹, S. Vanderick ¹, P. Mayeres ^{1,3}, C. Bertozzi ³, I. Misztal ⁴ and N. Gengler ^{1,5}

¹ Gembloux Agricultural University, Animal Science Unit, Passage des Déportés 2, 5030 Gembloux, Belgium

soyeurt.h@fsagx.ac.be

² F.R.I.A., Rue d'Egmont 5, 1000 Brussels, Belgium ³ Walloon Breeding Association, Rue des Champs Elysées 4, 5590 Ciney, Belgium ⁴ University of Georgia, Animal & Dairy Science Department, 425 River Road, 30605 Athens, USA ⁵ F.N.R.S., Rue d'Egmont 5, 1000 Brussels, Belgium

1. Aim and Objectives

Fatty acids profile influences the technological properties of butterfat and presents some interests for human health.

Feed impact is well known; lack of information about genetic parameters.

Chromatographic analysis are expensive → Limited numbers of samples.

→ ALTERNATIVE : MIR Spectrometry to predict the FA contents + Quantitative Models.

2. Material and methods

Animal Population

 7,700 samples in 25 herds and from 7 breeds were collected between April 2005 to May 2006 and analyzed on MilkoScan FT6000.

Prediction of FA contents

- -Calibration equations established previously by Soyeurt et al. (JDS 2006) were applied to 7,700 recorded spectra.
- -Prediction of C12:0, C14:0, C16:0, C18:0, C18:1, C18:2 9-cis,12-cis, saturated FA (SAT) and monounsaturated FA (MONO) in g/dl of milk. Conversion in g/100 g of milk and in g/100 g fat.

Estimation of Genetic Parameters

- Added 40,007 records on milk yields, %fat, %protein
- -Multi-trait mixed model:

Fixed effects: herd*date of test * class of lactation number; class of days in milk * class of lactation number; age * class of lactation number.

Random effects: residual effect, animal additive, permanent environment within and across lactations.

 Variance components were the average values measured from the 5 runs. Correlation matrices were bended by applying the weighted bending procedure reported by Jorjani et al. (JDS 2003).

3. Results and discussion

Heritabilities ranged between 9 to 28 %.

Table 1. : Average estimate and standard error (SE) of variances (in % of phenotypic variance) for genetic, 2 permanent environments and residual effect with a multi-trait model including milk vield, the contents of fat, protein and fatty acids in milk fat (g/100 g fat).

Total content of **SAT** in fat **is less heritable than MONO**. Selection based on MONO content in fat could be investigated.

However the major saturated FA (C14:0 C16:0 and C18:0) showed higher heritability values than C18:1.

٠.		Permanent environments							
		Herital	oility	Within la	ctation	Across la	ctation	Residual	
	Trait	Estimate	SE	Estimate	SE	Estimate	SE	Estimate	SE
b	Milk (kg/day)	18	1.7	31	0.7	9	1.5	42	0.2
	Fat (%)	32	1.8	5	0.2	5	1.2	58	0.1
	Protein (%)	28	2.2	12	0.4	9	1.7	51	0.3
	SAT (g/100 g fat)	14	1.5	27	1.5	3	0.7	55	0.4
	MONO (g/100 g fat)	24	2.3	25	1.7	8	1.6	43	0.4
	C12:0 (g/100 g fat)	9	1.2	24	1.2	5	1.0	61	0.4
n.	C14:0 (g/100 g fat)	19	1.7	20	1.3	7	1.6	52	0.4
	C16:0 (g/100 g fat)	20	2.2	8	0.9	12	1.8	60	0.5
	C18:0 (g/100 g fat)	28	2.3	14	1.4	9	2.0	50	0.6
	C18:1 (g/100 g fat)	15	1.6	28	1.5	4	1.0	53	0.3
	C18:2 (g/100 g fat)	15	1.8	15	1.6	6	1.4	64	0.8

Table 2.: Genetic (above the diagonal) and phenotypic (below the diagonal) correlations among milk yield, content of fat, content of protein, saturated (SAT), monounsaturated (MONO), C12:0, C14:0, C16:0, C18:0, C18:1 and C18:2 9-cis, 12-cis in milk fat.

Trait	Milk	Fat	Protein	SAT	MONO	C12:0	C14:0	C16:0	C18:0	C18:1	C18:2
Milk (kg/day)		-0.35	-0.48	-0.09	0.22	-0.34	-0.02	0.01	-0.15	0.11	-0.01
Fat (%)	-0.18		0.63	0.76	-0.22	0.55	-0.06	0.60	0.83	-0.78	-0.37
Protein (%)	-0.32	0.38		0.51	-0.34	0.77	0.15	0.20	0.52	-0.59	-0.02
SAT (g/100 g fat)	0.04	0.13	0.21		-0.44	0.67	0.37	0.55	0.66	-0.90	-0.66
MONO (g/100 g fat)	-0.06	0.03	-0.18	-0.73		-0.70	-0.84	-0.34	-0.44	0.67	0.67
C12:0 (g/100 g fat)	0.00	-0.03	0.37	0.75	-0.84		0.60	0.20	0.52	-0.78	-0.54
C14:0 (g/100 g fat)	0.09	-0.19	0.11	0.65	-0.90	0.84		0.00	0.10	-0.46	-0.68
C16:0 (g/100 g fat)	-0.03	0.10	0.05	0.44	-0.23	0.16	0.12		0.61	-0.62	-0.28
C18:0 (g/100 g fat)	0.00	0.65	0.23	0.30	-0.24	0.11	0.01	0.29		-0.78	-0.38
C18:1 (g/100 g fat)	-0.03	-0.13	-0.27	-0.93	0.83	-0.85	-0.73	-0.47	-0.33		0.70
C18:2 (g/100 g fat)	-0.10	-0.23	0.21	-0.50	0.53	-0.34	-0.50	-0.23	-0.32	0.53	

Genetic correlations FAT and FA were highest witht saturated FA except for C14:0.

Genetic correlations between some FA were high. These correlations seemed to reflect the metabolic process of production of FA (*de novo* synthesis, biohydrogenation,...)

4. Conclusion

Genetic variability of FA exists. Thanks to the MIR prediction of FA, these traits could be easily included in the routine Walloon genetic evaluation system.

