Genetic parameters for direct and associative effect on survival in layers

Esther Ellen and Piter Bijma

Animal Breeding and Genomics Centre, Wageningen University, NL

Acknowledgement

- Project 'The genetics of robustness in laying hens'
- Joint project of Wageningen University and Institut de Sélection Animale B.V., a Hendrix Genetics Company

 Financially supported by SenterNovem

Introduction

- Social interactions
- Mortality due to cannibalism a worldwide problem
- Mortality depends on behaviour of group members
- Social interactions provide a *heritable* social environment
- Traditional breeding inadequate → ignores effect group members
- Extend traditional models, include associative effects (Griffing, 1967)

Theory - model

The Model:

- Direct effect of self
- Associative effect of group members

Estimate genetic parameters for both direct and associative effect on survival days in three purebred layer lines

Materials en Methods

			Ν	No. sires	No. dams
		W1	6276	36	537
	17,018 hens				
•	3 lines coded: W1, WB and WF	WB	6916	35	537
•	2 laying houses	WF	3588	20	295
	4 birds/cage				

- Randomly composed cages
- Intact beaks

Trait is survival days

Survival days = number of days from start laying period till either death or end of the study (max is 447 days)

Data analysis

- Separate per line
- Estimation of genetic parameters: Linear animal model (ASReml)
- 5 generations of pedigree
- Two models:
 - Direct effects model: $y = Xb + Z_Da_D + e$
 - Direct-Associative effects model: $y = Xb + Z_Da_D + Z_Sa_S + e$
 - Y = observed survival days
 - Xb = fixed effects
 - a_D = vector of direct breeding values
 - a_S = vector of associative breeding values

• e = vector of residuals:
$$e_i = E_{D,i} + \sum_{j \neq i}^{n-1} E_{S,j}$$

Heritable variation

- Each individual interacts with *n* 1 group members
- Total breeding value (TBV) = total heritable impact of an individual on the population mean: $TBV_i = A_{D,i} + (n 1)A_{S,i}$

$$\sigma_{TBV}^{2} = \sigma_{A_{D}}^{2} + 2(n-1)\sigma_{A_{DS}} + (n-1)^{2}\sigma_{A_{S}}^{2}$$

 The total heritable variance expressed as a proportion of the phenotypic variance equals

$$T^2 = \sigma_{TBV}^2 / \sigma_P^2$$

- T^2 = measure of "heritability"
- No interaction, $T^2 = h^2$

Results – survival rate

	Laying house 1 (%)	Laying house 2 (%)
W1	53.6	64.6
WB	50.2	56.3
WF	74.1	75.1

Results – genetic parameters

		W1	WB
Direct effects model	$\sigma_{\scriptscriptstyle A_D}$	30.4 days	44.4 days
	h^2	0.07 (±0.02)	0.10 (±0.02)
Direct-Associative effects model	$\sigma_{\scriptscriptstyle TBV}$	49.9 days	54.8 days
	T^2	0.19 (±0.06)	0.15 (±0.05)
	r_A	0.18 (±0.21)	-0.31 (±0.18)

$$\sigma_{TBV}^2 = \sigma_{TBV}^2 / \sigma_{P_{grp}}^2 \qquad \sigma_{TBV}^2 = \sigma_{A_D}^2 + 2(n-1)\sigma_{A_{DS}} + (n-1)^2 \sigma_{A_S}^2$$

Discussion

- Proportion heritable variance 1.5 through 3 fold larger than currently believed using traditional model
- Results genetic parameters depend on:
 - Line
 - Environment: # animals/cage
- Differences in genetic parameters between lines
- Survival data not linear \rightarrow survival analysis
- Estimating genetic parameters for direct and associative effect is rather "simple"
- Random cages

- Results are important for poultry breeding program
- Prospects for reduction of mortality using genetic selection are quite good!

