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1 Introduction

The uniformity of special traits is economically important in animal production. A high vari-

ability of piglet birth weight within litter impacts the survival rate negatively (e.g. Högberg

& Rydhmer, 2000). Therefore, present research in livestock genetics examines genetic effects

on the so called within-litter variance (e.g. Roehe & Kalm, 2000; Damgaard et al., 2003).

The present study investigates genetic effects on the within-litter variance in consideration of

a sex effect on piglet birth weight. The objectives are to decrease the within-litter variance

and piglet mortality and to keep litter size high. The within-litter variance is defined as the

sow’s trait. The trait is fitted by animal models to estimate heritabilities. Transformations

of the within-litter variance are described by linear mixed models (LMMs). We use restricted

maximum likelihood (REML; Searle et al., 1992) to estimate the variance components. Fur-

thermore, the untransformed trait is fitted by a generalized linear mixed model (GLMM)

with log-link function. The presented models are compared by residual diagnostic.

2 Material and methods

The German breeding organization BHZP provided a dataset consisting of 103 266 birth

weights of 9 439 litters of German Landrace (LR; 5 379 litters) and German Edelschwein

(ES; 4 060 litters). The data were recorded from January 2002 to August 2006. Births of

N = 3 914 sows (LR 2 245; ES 1 669) in the first to eighth parity were observed. It is assumed,

that birth weights are independently and normally distributed within litter. A preliminary

analysis of piglet birth weight resulted in a significant sex effect on the phenotype. After

generating the sample variances per litter and sex we applied an adjusted F -test (Kenward

& Roger, 1997) to exclude a sex effect on the variability of birth weight within litter. Thus,

the pooled sample variance of male and female birth weights within litter is defined as the
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sow’s trait. This trait is proportional to a χ2-distributed random variable with (ni,litter − 2)

degrees of freedom, where ni,litter denotes the litter size of sow i ∈ {1, . . . , N} per litter. The

genetic effect is examined separately for each line.

The distribution of the pooled sample standard deviation S is well approximated by a nor-

mal distribution, see Figure 1(a). Therefore, the within-litter standard deviation may be

described by a linear mixed model, i.e.

S = Xβ + Zu+ e . (M1)

Model (M1) consists of random effects u, fixed effects β (farm-year-season, parity, interaction

line of boar × line of sow) and the random deviation e ∼ N(0,W−1σ2
e). The matrix W is a

diagonal matrix of weights. The inverse of the conditional variance of the standard deviation

given the random effects is defined as weight per sow and litter. The vector u includes the

genetic effect of sow ua ∼ N(0, Aσ2
a) with the numerator relationship matrix A, effect of

father of litter up ∼ N(0, Iσ2
p) and the permanent environment upe ∼ N(0, Iσ2

pe), which

affects all litters of one sow. Moreover, it is V = V ar(S) = ZGZ ′+W−1σ2
e and V ar(u) = G.

We apply the software ASReml 2.0 (Gilmour et al., 2006) to estimate the variance components.

The weights 2 (ni,litter − 2) /ŝ2
i,litter are included, where ŝ2

i,litter denotes the predicted sample

variance per litter. The weights are iteratively adjusted to improve the estimation of variance

components and the prediction of the trait.

Moreover, the distribution of the logarithmized pooled sample variance is well approximated

by a normal distribution. The animal model for lnS2 consists of the same components as

mentioned above. In this case constant weights (ni,litter − 2) /2 are used for the estimation of

variance components.

To evaluate the presented models we analyzed the studentized standardized residuals ri,litter.

One needs the difference between observed and predicted value, i.e. εi,litter = si,litter − ŝi,litter,

and the corresponding entry of the residual covariance matrix V ar(ε) = K (V −Q)K ′ with

the matrices Q = X (X ′V −1X)
−
X ′ and K = I − ZGZ ′V −1 to calculate the studentized

residuals ri,litter of model (M1). Substituting the unknown parameters by their estimates

yields

ri,litter =
εi,litter√

V̂ ar(εi,litter)
. (R)

The studentized residuals of the logarithmized sample variance are calculated similarly.
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Considering the χ2-distribution of the pooled sample variance S2 the following generalized

linear mixed model is applicable on the pooled sample variance

S2 = exp {Xβ + Zu} ε . (M2)

The vectors u and β coincides with those used in model (M1). The conditional expectation

µ = E(S2|u) is transformed into the linear predictor η with use of the link function g.

We use the log-link function, hence η = g(µ) = Xβ + Zu. The random deviations εi,litter

(i = 1, . . . , N) are independently and gamma distributed with expectation one and variance

2φ/(ni,litter − 2). The dispersion parameter φ describes additional variance, which is not

covered by the model. The estimation of variance components was done in ASReml 2.0 by

an adapted REML method for GLMM (Wolfinger & O’Connell, 1993) with regard to the

gamma distributed error ε.

The studentized residuals ri,litter of model (M2) are evaluated on the scale caused by the

link function g. The deviations are εi,litter = ∆−1
i,litter

(
s2

i,litter − ŝ2
i,litter

)
, where ∆−1 = [∂η/∂µ]

denotes the matrix of first derivatives at the estimated parameters. Using the log-link it

holds ∆i,litter = ŝ2
i,litter. The residual variance is V ar(ε) = K

(
Ṽ −Q

)
K ′ with the matrices

K and Q as mentioned above and Ṽ = ZGZ ′ + φW−1. The diagonal matrix W consists of

the weights (ni,litter − 2)/2. Thus, the studentized residuals are calculated similarly to (R).

The estimation of heritability was done in the LMMs by

h2
litter =

σ2
a

σ2
a + σ2

p + σ2
pe + w−1

litterσ
2
e

. (H)

Substituting σ2
e by φ in (H) the estimator h2

litter is also used to estimate heritability in the

GLMM. To achieve an appropriate estimator for heritability we construct a special weight

wlitter based on average values per litter. Hence the average litter size and – in case of model

(M1) – the average predicted standard deviation per litter are included in the estimation.

3 Results and discussion

The estimation of heritabilities and their standard errors (see Table 1) yielded to similar

results within line. The heritability was about 8 % in line LR and 10 % was estimated in line

ES. These estimates were transformed into breeding successes δlitter. The breeding success

was determined relatively to the estimated standard deviation within litter and amounts to

at least 1 %. The annual proportion selected was 56.25 %. Because the proportion selected
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is fairly high, the 1 % can be interpreted as a lower bound of theoretically possible breeding

success.

Figures 1(c) and 1(d) contrast the studentized residuals with the predicted traits of model

(M1) and (M2), respectively, exemplary for line ES. The residuals in Figure 1(c) are evenly

distributed and their fluctuation margin is small. The estimates of skewness and kurtosis are

0.430 and 0.356, respectively. In contrast, the residuals in Figure 1(d) show a light trend,

which was not completely balanced by the log-link function. The estimates of skewness and

kurtosis are 1.212 and 2.218, respectively. An alternative link function might improve this

residual appearance. But having a gamma distributed error ε the usual link functions such

as inverse and identity are not appropriate to reduce the skewness.

Figure 1(b) outlines the role of weighting in line ES. Analyzing model (M1) without weights,

that means e ∼ N(0, Iσ2
e), the absolute residual values of sows within 5 % of the lowest

litter sizes turned out to be larger than in a weighted analysis and vice versa. The predicted

trait was often slightly misestimated. Note, that the weights were defined as the inverse

conditional variances of Si (i = 1, . . . , N) and thus, by weighting the trait we achieve an

asymptotic residual variance of one. However, the weighted analysis of the sample standard

deviation only showed negligible differences in respect to the distribution of the studentized

residuals in comparison to an unweighted analysis.

The evaluation of estimated breeding values ua of model (M1) and (M2) yielded to a rank

correlation of 0.95 (line LR) and 0.98 (line ES). The rank correlation between weighted and

unweighted analysis of model (M1) was 0.94 (line LR) and 0.96 (line ES). Thus, in terms of

breeding values no essential differences between the presented models are recognizable.

4 Conclusions

This study showed, that a significant sex effect on the piglet’s phenotype but not on its

variability can be appropriately handled by the pooled within-litter variance of male and

female birth weights. The LMMs for S and lnS2 as well as the GLMM for S2 are suitable

to analyze the genetic effect on the within-litter variance. The residual diagnostic, that

means the analysis of the residual distribution and calculating the skewness and kurtosis of

the studentized residuals, favors model (M1) to fit the within-litter variance. The estimated

heritabilities are quite small, nevertheless there is potential to decrease the variability of birth

weight within litter through selection.
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Trait σ2
a (se) h2

litter (se) δlitter (%)

Line LR S 778.704 (219.653) 0.073 (0.020) 1.02

lnS2 0.065 (0.016) 0.084 (0.020) 1.29

S2 0.041 (0.010) 0.085 (0.020) 1.03

Line ES S 836.727 (165.927) 0.108 (0.021) 1.37

lnS2 0.055 (0.010) 0.088 (0.015) 1.21

S2 0.050 (0.010) 0.107 (0.021) 1.27

Table 1: Estimation of additive-genetic variance σ2
a and heritability h2

litter; breeding success
δlitter is given relatively to the estimated standard deviation within litter
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(a) Density of sample standard deviation S vs.
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E(S) ≈ σ, ν = σ2/(2 · df)
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(b) Studentized residuals with and without
weighting the within-litter standard deviation
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(c) Studentized residuals of the linear mixed
model (M1)
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(d) Studentized residuals of the generalized lin-
ear mixed model (M2)

Figure 1: Analysis of variability of piglet birth weight within litter (German Edelschwein)
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