

GENE EXPRESSION ASSOCIATED WITH BEEF SENSORY QUALITIES

C. Bernard, I. Cassar-Malek, H. Dubroeucq, G. Renand* and J-F. Hocquette

URH, INRA Clermont-Ferrand/Theix, *SGQA, INRA Jouy-en-Josas-France

BACKGROUND

- Beef sensory qualities (tenderness, colour, flavour, juiciness) depend on many factors including muscle characteristics
- However, these explain less than 35% of the variability

OBJECTIVES

- Identify specific and reliable indicators of beef sensory qualities
- Explore muscle gene expression and identify genes that are differentially expressed between beef meat cuts with variable tenderness, juiciness and flavour

Transcriptomics

EXPERIMENTAL DESIGN

Animals

Charolais bull calves from an INRA experimental herd, weaned at 32 wk, slaughtered at 15 mo (n=13) or 19 mo (n=12)

Samples

Longissimus Thoracis (LT)

Rib steak

- Muscle Biochemistry
- Meat Quality attributes
- Transcriptomics

MEASUREMENTS

Sensory qualities

Trained panelists: Tenderness, Juiciness and Flavour

Meat texture

Shear force (Warner-Brätzler device) Water loss

Biochemistry

- √ metabolic enzymes (COX, ICDH, CS, LDH)
- ✓ lipids (total, TG, PL)
- √ total collagen content
- √ fibre areas

TRANSCRIPTOMICS Reference Muscle sample total RNA **OLIGO ARRAY** 6,5K, triplicate 50mers Human, murine Reverse transcription Cy5 Labelling Hybridisation (n=100) Data analyses Clustering Gene Ontology information MA plot Array scan SAM 23.19% 8.25% 22.46% Image analysis 31.96% 15.94%

17.53%

CORRELATION OF SENSORY TRAITS WITH MUSCLE CHARACTERISTICS AND TEXTURE

$\alpha = 0.05$											
Tenderness	0.37	0.05	0.5	-0.20	0.15	0.15	0.23	-0.36	0.3	0.15	
Juiciness	0.30	-0.03	-0.15	0.14	-0.50	-0.03	-0.45	0.02	0.03	0.28	
Flavour	0.58*	-0.09	-0.16	0.01	-0.31	-0.35	-0.26	-0.05	0.31	0.44	

Tenderness : ICDH, COX (+), WB (-) → 25%

Juiciness: Lipids, TG (-), COX (+) \rightarrow 25%

Flavour : COX, Collagen (+) → 33%

DIFFERENTIALLY EXPRESSED GENES

SAM analysis	Tenderness	Juiciness	Flavour	
Differentially expressed genes	615	1005	799	
Total of genes common to at least 2 sensory traits	1772			
Differential genes (FC>1.4) in at least one trait	146	122	155	
Total of differential genes in at least one trait	2	215		

> 80% homology with bovine genome (genes, EST)

GENE ONTOLOGY INFORMATION

Distribution of the 215 differential genes

CORRELATION OF SENSORY TRAITS WITH GENE EXPRESSION

		Tenderness	Juiciness	Flavour	
	CPT1B	ns	*	*	
	Xlkd1	ns	*	*	
	NDUFB4	ns	*	*	
	JMJD1B	ns	**	**	
	LAMA3	ns	*	**	
	FLJ12193	*	**	**	
Up-regulated genes	Npm3	*	*	*	
Jer	Cyp2c5	ns	ns	ns	
Ō,	TRIM55	*	**	**	
ate	Cbr2	*	*	**	
Ď	C:6970	ns	**	**	
<u>ē</u>	PRRX2	ns	*	**	
٩ ط	OTOR	ns	**	**	
	CACNA	ns	**	**	
	lreb2	ns	*	**	
	PRKAG1	ns	*	**	
	NID1	ns	ns	*	
	MPDZ	ns	**	**	
	CGREF1	ns	*	**	

Nineteen of the 23 up-regulated genes belonged to a same expression cluster, and 18 of them were correlated with sensory traits

		Tenderness	Juiciness	Flavour
own- julated jenes	PDK4	ns	ns	ns
	DNAJA1	** (-)	ns	ns
	CSRP3	ns	*	*
reg g	CRYAB	ns	ns	ns
	THOC3	ns	ns	ns

▲ Five of the 9 up-regulated genes belonged were correlated with a sensory trait

* : a = 0.05; ** : a = 0.01

What is DNAJA1?

- DNAJA1 encodes a member of the large heat shock 40kDa protein family.
- This protein is a co-chaperone of Hsc70 and could to play a role in protein import into mitochondria.
- Its involvement in beef tenderness remains unknown

IS DNAJA1 AN MARKER OF BEEF TENDERNESS?

Micro array data

N=14 samples

Confirmed by Real time RT-PCR

PRINCIPAL COMPONENT ANALYSIS OF BIOLOGICAL AND TRANSCRIPTOMIC DATA

65% of sensory quality variability is explained

CONCLUSION

The study allowed identification of genes whose expression was associated with beef sensory qualities

Of the total differential genes (n=215, FC>1.4, FDR>1%):

- 42 genes differentially expressed according to the three criteria (tenderness, juiciness and flavour)
- 33 genes associated with high sensory quality
 √e.g JMJD1B, FLJ12193, TRIM55, C:6970, OTOR and
 CACNA1B correlated with flavour and juiciness (45 to
 60%)
 - ✓ e.g. DNAJA1 negatively correlated with tenderness
 (65%): patent for beef quality prediction

Thank you for your attention

For any question, send an E-mail to hocquet@clermont.inra.fr or to cassar@clermont.inra.fr

