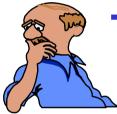


Milk fatty acid profile in goats receiving high forage or high concentrate diets supplemented, or not, with either whole rapeseeds or sunflower oil

Y. Chilliard*, S. Ollier, J. Rouel, L. Bernard, C. Leroux

Adipose Tissue and Milk Lipids Group, Herbivore Research Unit, INRA-Theix, France.



Mammary lipid metabolism :

To evaluate <u>nutritional</u> means to modulate the milk <u>fatty acid</u> composition

To decipher the key level of the regulation of lipid synthesis in mammary gland

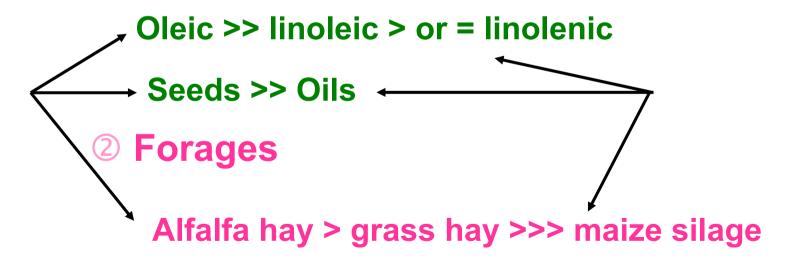
WP3.1.3: Nutrition study on goats

(Months 18-36)

✓ <u>Topics</u>: Effect of the level of concentrate and lipid supplement on mammary metabolism

✓ <u>Aims</u>: (i) enhance milk cis-MUFA content (particularly oleic acid),

(ii) maximise differences of milk fat secretion btw goats and cows



How to maximize the "oleic/trans-18:1" responses in milk fat?

(INRA 2000-04 database, 43 diets on 413 goats)* + (published cow papers)

Dietary fatty acids

^{*} Chilliard et al, JDS 2003, Woodhead Ltd 2006

Experimental design:

A 4x4 Latin Square design with 4-week periods

- **⇒** 16 lactating goats receiving :

- ➤ low forage /concentrate (30/70): <u>C</u>
- ➤ low forage /concentrate + 4-5% sunflower oil: <u>C-SO</u>

Goat dairy performances & Milk FAs (oleic, *trans*)

Diet	F	F-RS	С	C-SO
Milk Yield (kg/d)	4.3 ^a	3.9b	4.2 ^a	4.3 ^a
Fat content (g/kg)	33 b	39 ^a	32 ^b	38 ^a
Fat yield (g/d)	140 ^{bc}	147 ^b	135°	162 ^a
Oleic acid (% FAs)	14.8 ^b	22.7 ^a	14.2 ^b	14.8 ^b
Total <i>trans</i> FAs (%)	2.7 ^c	4.4 ^b	3.7 ^b	14.5 ^a

Goat milk FA profile (trans, saturated, PUFA)

Diet	F	F-RS	С	C-SO
Total <i>trans</i> FA (%)	2.7 ^c	4.4 ^b	3.7 ^b	14.5 ^a
Incl t11-18:1	0.9 ^b	0.9 ^b	1.3 ^b	7.7 ^a
c9, t11-CLA	0.5 ^b	0.5 ^b	0.8 ^b	3.5 ^a
others	1.3 ^d	3.0 ^b	1.6 ^c	3.3 ^a
Atherogenic FA index (1)	84 ^a	60 b	83 ^a	62 ^b
18:3n-3 / 18:2n-6	0.3 ^b	0.5 ^a	0.2 ^c	0.1 ^d

^{(1) %} C12:0 + 4 (% C14:0) + % C16:0)

Conclusions:

Both F-RS and C-SO > saturated FAs

F-RS 7 oleic; C-SO 7 CLA & trans FA

Goat and cow respond very differently :

- milk fat content and yield
- milk FA profile (trans FAs)

Perspectives:

Effects of these diets (with largely different FA profiles) on mammary gene expression?

Development of micro array for transcriptome analyses to identify genes of interest

(C. Leroux et al.)

Poster Session Ph7.11, Abstract n° 542 by S. Ollier et al:

 Identification of around 200 genes (among 8,400) regulated by feed deprivation in mammary gland.

Procedure of micro-array analyses available and will be applied to lipid supplemented diets

