

Effect of diet manipulation on manure characteristics

I: Agronomical features and atmospheric emissions

II: Energy recovery of biogas

Olga Conde Moreira

18 September 2006

EAAP MEETING - ANTALYA

INTRODUCTION

Problems related with intensive livestock:

- Concentration in specific regions in a country
 - High concentration of units
- Insufficient areas available for disposing the manure at farm level
- Heavy legislative pressure by EU

INTRODUCTION (Cont.)

IPPC

- Integrated Pollution Prevention Control
- Instalations are required to apply for an Environmental Licence, with the adoption of Best Available Techniques

Strategies of Waste Management

INTRODUCTION (Cont.)

IPPC

Hierarchy of Waste Management Strategies

Adapt. Burton and Turner (2003)

INTRODUCTION (Cont.)

NH3 Excretion (g/animal/day)

T = 8.36

N = 2.65

Reduction = 5.71 g x 365 days \longrightarrow 2.08 kg/Year

Portuguese indigenous swine population = 4 500 000

30 - 100 kg — 105 days

Factor Year = 105/365 = 0.29

Mean efective number = 4500000×0.29

→ 1 305 000 PIGS

Total Reduction in NH3 Production

1 305 000 x 2.08

1 996 Ton/Year

I: Agronomical features and atmospheric emissions

OBJECTIVES

To evaluate the effect of nitrogen and phosphorus dietary manipulation on pig manures characteristics: composition and agronomical application as fertilizer.

METHODOLOGY

Productive trials

- 45 Large White x Land Race growing/finishing males (35 – 90kg)
- Three experimental diets
 - Diet T 18% crude protein, bicalcic phosphate
 - Diet N 15% crude protein and amino acid balanced
 - Diet **P** 18% crude protein, monocalcic phosphate
- Total collection and storage of manures T, N, P
 - Physical, Chemical and Microbiological evaluation

METHODOLOGY (Cont.)

Agronomical Studies

- Manures (T, N, P) were evaluated in fertilization studies,
 - Four levels of application (0, 42.5, 85, 170 kg.ha⁻¹ of organic N).
 - Complete randomized block design, with three replications
- Sorghum was used as plant test (60kg/ha).
 - Vegetal biomass production was quantified.

METHODOLOGY (Cont.)

Agronomical Studies

- Air emissions were monitored
 - For the treatment corresponding to the highest dose of N application (170 kg. ha⁻¹)
 - At six times after soil application:
 - before spreading (initial situation),
 - 15 minutes and 4 hours after spreading (time of the day with the highest temperature),
 - 12 hours after the scattering (the night period)
 - → 15 minutes and 4 hours after incorporation in the soil (the highest temperature).
- The leachates from treatments 0, 85, and 170 kg. ha-1 were collected from lysimeters and chemically analysed.

RESULTS

Ingredient Composition of experimental diets (kg/ton)

Productive Phase	Growing*			Finishing**		
Diet	T	N	Р	T	N	Р
Barley	150	150	150	250	300	250
Wheat	250	250	250	250	185	250
Maize	272	367	270	223.5	331	222.5
Soybean Oil	19	8.0	20	12	5.0	12
Soybean Meal (42%)	277	188.5	277	236	141	236
Methionine	0.70	1.0	0.70	0.70	1.2	0.70
Lysine	1.3	3.6	1.30	1.3	3.8	1.30
Threonine	0.30	1.3	0.30	0.70	1.8	0.70
Calcium Carbonate	6.8	7.5	11	9.0	12.5	12.3
Monocalcium Phosphate	-	-	10.5	-	-	8.0
Dicalcium Phosphate	13.7	13.6	-	10.3	10.7	-
Salt	4.2	4.5	4.2	4.5	6	4.5
Premix (growing*/ finishing**)	5.0	5.0	5.0	2.0	2	2.0

Composition of experimental diets

	Growing*			Finishing**		
	T	N	Р	Т	N	Р
Calculated Composition						
Crude protein (%)	18,0	15,4	18,0	17,0	14,0	17,0
Total Ca (%)	0,70	0,70	0,70	0,69	0,81	0,70
Total P (%)	0,61	0,59	0,61	0,55	0,53	0,55
Available P (%)	0,35	0,35	0,35	0,30	0,30	0,30
Analyzed Composition (n=3)						
Crude protein (%)	<u>17,1</u>	15,2	18,0	<u>15,1</u>	13,1	16,9
Total Ca (%)	0,58	0,55	0,80	0,68	0,81	0,73
Total P (%)	<u>0,49</u>	0,48	0,65	0,47	<u>0,45</u>	0,55

Nitrogen and Phosphorus Composition of manures (%DM)

	Т	N	Р	sem	S
Total N	4,56	4,65	5,12	0,87	ns
Soluble N	2,05	2,25	2,64	0,66	ns
N - NH3	2,39	2,30	3,18	1,34	ns
Total P	4,15	3,66	4,22	1,27	ns

Sorghum Productions (kg DM/ha) (n=20)

		<u> </u>	<u>· </u>
Experimental treatments	1 st cut	2 nd cut	
0	6691	6504	
T1 - 42,5 kg N/ha	7899	9166	
T2 – 85 kg N/ha	7153	9561	
T3 - 170 kg N/ha	7851	<u>11896</u>	NI sastus ati an lass
N1 - 42,5 kg N/ha	7019	10072	N extraction by Sorghum
N2 - 85 kg N/ha	7818	8437	
N3 - 170 kg N/ha	<u>9124</u>	7886	1 st cut – 170 kg/ha
P1 - 42,5 kg N/ha	4685	9569	2 nd cut – 206 kg/ha
P2 – 85 kg N/ha	7047	7840	
P3 - 170 kg N/ha	<u>8845</u>	10291	
sem (±)	1030	1281	
Coef. Variation (%)	24	24,3	

Variation of N-NO3⁻ in leachates with time (mg/l)

Variation of N-NH4+ in leachates with time (mg/l)

Variation of N-NO3⁻ in leachates with dose and type of manure (mg/l)

Variation of N-NH4⁺ in leachates with dose and type of manure (mg/l)

Gaseous emissions following pig slurry application

(Sousa et al, 2006)

CONCLUSIONS

- The maximum level of fertilisation presented the highest vegetal biomass productions.
- Sorghum N extraction capacity varied between 170 and 206 kg/ha.
- The highest leachate nitrates were observed in November, after the 2nd cut
 - ———— lack of sorghum for soil extraction
- Leachate nitrates were superior where the highest levels of manure were applied and for P, followed by N and T derived manure
- The lowest ammonia and CO2 emissions were observed for manure N.

Effect of diet manipulation on manure characteristics

I: Agronomical features and atmospheric emissions

II: Energy recovery of biogas

Olga Conde Moreira

18 September 2006

EAAP MEETING - ANTALYA

II: Energy recovery of biogas

OBJECTIVES

To evaluate the effect of dietary nitrogen and phosphorus manipulation on the optimisation of biogas production, by the energetic valorisation of manures

METHODOLOGY (Cont.)

Lab scale Biodigestors (3 I capacity)

Incubation of manures T, N, P

Batch system of 35 days

Gas measurements at 5 days intervals

RESULTS

CONCLUSIONS

- Manure from pigs fed diet P presented the best profile of CH4 production.
- After the 15th day of incubation all manures presented a decrease of CO2 values indicator of a degradation of anaerobic conditions.
- Manure from pigs fed diet N showed the lowest gas productions.
- N manure presents limited efficiency in energy recovery as biogas.

