abernues@aragon.es L31.5

Trajectories of evolution of cattle farming systems in Spanish mountain areas

García-Martínez A., Olaizola A., Riedel J.L., Bernués A.

Index

- Introduction
- Objectives
- Methodology
- Results
 - 1. Global evolution of cattle systems
 - 2. Patterns and trajectories of change
 - 3. Factors associated to patterns of change
- Concluding remarks

Introduction

- LFS are in continuous change
- Farms evolve depending on internal factors and the social and economic environment
- CAP has had an enormous influence in recent years
- What other factors determine the evolution of LFS?

Objectives

- 1. to analyse the evolution of cattle farming systems in mountain areas in the last 15 years
- 2. to identify different patterns and trajectories of change
- 3. to identify what factors can influence the evolution of LFS

Methodology

- 1. Global evolution of cattle systems: Student T
- 2. Patterns and trajectories of change: <u>PCA and Cluster</u> Analysis of <u>repeated measures</u> for structure, management and economics (once eliminated common temporal effect)
- 3. Factors associated to patterns of change:

 <u>Discriminant Analysis</u> of patterns of change with farm, family and socio-economic factors

1. Global evolution: structure, labour and orientation

	1990	2004
No. farms	101	71
Land Area (ha)	58.1	66.1
Livestock Units	49.0	70.1
Work Units	1.8	1.4
Liv. Units/ Work Units	27.3	54.1
% off-farm job (farmer)	13.7	25.0
% off-farm job (family)	41.2	58.3
% dairy farms	90.2	1.4
% fattening farms	9.8	48.6

1. Global evolution: grazing management

1. Global evolution: economics

	1990	2004
Feeding cost/ LU	202	142
Total Revenue ¹	43.5	72.5
Gross Margin ¹	29.1	50.1
GM-premiums ¹	23.8	21.1

Figures in constant monetary value 2004 (€); ¹(000€)

GM without premiums

premiums

2. Patterns and trajectories of evolution

2. Patterns and trajectories of evolution

3. Factors associated to change

Farm: orientation of production

Family * *:
family size, children
and index of farmer
innovation

Socio-economic
environment:
location and evolution
of active population
(services/
agriculture)

Concluding remarks

- structural and productive adjustment: milk abandonment and expansion of on-farm fattening;
- extensification of management (grazing period enlargement and reduction of winter housing) and farm economics (reduction of off-farm inputs);
- 3. intensification of capital (Livestock Units / Working Units) and increment of labour productivity
- 4. different dimensions of change (size, extensification, stocking rate, fattening orientation) and trajectories of evolution, despite common temporal effects
- 5. importance of internal factors, socio-economic environment and especially family characteristics to understand farm dynamics