A dynamical model to assess the efficiency of grazing strategies for biodiversity conservation

Muriel Tichit - Luc Doyen - Jean Yves Lemel - Olivier Renault

WHY matter Decision Support tools in livestock grazing management?

- Incorporate trade-offs / short & long term consequences of management
- Identify changes in habitat quality
- Link these changes to biodiversity and production outcomes
- Illustrate for stakeholders trade-offs among different priorities

Integrative modelling framework \rightarrow HOW to manage grasslands to benefit <u>both</u> livestock production and biodiversity conservation

Outline:

- A few insights in modelling framework
- Compatibility between productive ecological constraints
- Trade-offs among multiple goals
- DST weak & strong points

Modelling framework:

Modelling framework: viability theory

Constraints = thresholds to be avoided

$$K \begin{cases} b_{\min} \leq biomass \leq b_{\max} \\ h_{\min} \leq harvest < h_{\max} \end{cases}$$

Viable trajectory: verifies constraints at any point in future time

Viability kernel: largest set with one viable trajectory

Viability constraints (1): habitat quality

Viability constraints (2): cattle requirements

sward mass demand \leq available biomass $\forall t > 0$

=> Implicit limit on livestock density (LU_{max})

Viable grazing regimes trajectories

Minimal grazing

Maximal grazing

Viable grazing
LU_{max}

Viable sward height trajectories

Minimal grazing

Habitat quality constraints:

Lapwing / May

--- Redshank / June

Maximal grazing

Average economic merit of grazing regimes (n=50 simulations)

Habitat quality	Grazing economic merit	
	€ ha ⁻¹ year ⁻¹	
	minimal	maximal
high	240	349
mixed	151	431

Consequences on bird community over 15 years

CONCLUSIONS (1)

- Modelling management <u>dynamics</u>
- Management as a <u>driver</u> of habitat quality -> irreversibility thresholds?
- Flexibility & limited data requirements
- Productives and ecological outcomes → complex trade-offs

CONCLUSIONS (2)

- No a priori hierarchy between productive and ecological constraints
- Range of acceptable outcomes
- Promoting exchanges among multiples stakeholders
- Facilitation tool to reflect on potential conflicts between conservation and productive objectives

Acknowledgements:

- Field team of INRA Saint Laurent de la Prée & ADEV
- Financial support from French Institute for Biodiversity
- · Scilab consortium www.scilab.org

