An autonomous agent algorithm to compute the Weitzman genetic diversity for large sets of taxonomic units

Henner Simianer and Manfred Tietze

Institute of Animal Breeding and Genetics Georg-August University Göttingen Germany

The problem

- → Weitzman's diversity concept (Weitzman 1992, 1993) is widely accepted as a framework to derive priorities for conservation of livestock breeds
- → Weitzman's diversity metric D is tedious to calculate
- → Weitzman (1992) presented a recursive algorithm, with N breeds required storage capacity and computing time are ~ proportional to 2^N
- \rightarrow exact solutions only published for up to N = 35 breeds
- → suggested approximations (e.g. Thaon d'Arnoldi et al, 1998) yield a systematic and massive downward bias

The objectives

- → Redefine the problem of the calculation of the Weitzman diversity D in a different mathematical context (combinatorial optimisation problem)
- → Present an autonomous agent algorithm to find good solutions (arbitrarily close to the unique exact solution) in linear time
- → Derive a conservative estimate of the magnitude of the estimation error

An ,ant algorithm' to find the best way:

- 1. Send many (100) ants on random paths
- 2. identify the best (,largest D') path, mark this path with a pheromone proportional to its quality
- 3. Send again 100 ants, let them decide according to pheromone concentration

An ,ant algorithm' to find the best way:

- 1. Send many (100) ants on random paths
- 2. identify the best (,largest D') path, mark this path with a pheromone proportional to its quality
- 3. Send again 100 ants, let them decide according to pheromone concentration, then mark again
 - ... pheromone concentration, pheromone degradation, independent restarts, parameter optimization

 $\boldsymbol{H}_{o}\!\!:$ no further realisations in the interval $[\boldsymbol{D}_{max},\ \infty]$

 H_a : further realisations in the interval $[D_{max}, \infty]$

 $\boldsymbol{H}_{o}\text{: no further realisations in the interval }[\boldsymbol{D}_{max},~\infty]$

 $H_{\text{a}}\text{:}$ further realisations in the interval $[D_{\text{max}},\ \infty]$

 $\boldsymbol{H}_{o}\!\!:$ no further realisations in the interval $[\boldsymbol{D}_{max},\,\boldsymbol{D}_{max}\!\!+\delta]$

 H_a : further realisations in the interval $[D_{max}, D_{max} + \delta]$

→ Probability is 2.4 per cent, that the true value is in the interval [5,88107; 5,88207] but was by chance not observed

max. error =
$$100 \text{ x } \delta/D_{max} = 0.017 \text{ per cent}$$

More replicates
$$\rightarrow$$
 reduce $\alpha | \delta$ or \rightarrow reduce $\delta | \alpha$

Conclusions

- → Calculation of Weitzman's diversity redefined as a discrete combinatorial optimisation problem
- → An ant (autonomous agent) algorithm is suggested to find good solutions in linear time
- → Arguments are presented to estimate the possible bias, which is small
- → In all data sets where the exact solution is known, the same result was obtained with the ant algorithm
- → Size of the optimisation problem is no longer prohibitive (used to calculate D for up to 800 units)

Any questions?