

Transmission Disequilibrium Test for fine mapping based on haplotypes

Xiangdong Ding and Henner Simianer

Institute of Animal Breeding and Genetics, University of Goettingen, Germany

Outline

- Haplotype inference
 - Introduction of important methods
 - Parsimony (Clark,1990)
 - EM (Excoffier and Slatkin, 1995)
 - Bayesian (Stephens and Donnelly,2001)
 - Haplotype inference using family information
- Transmission Disequilibrium Test (TDT)
- Haplotype-based TDT

Genotype and Haplotype

A collection of alleles derived from the same chromosome

(Gen	otype	Haplotype			
	2	13		2		13
	1	6	Haplotype	6		1
	9	15	reconstruction	9		15
	4	17		17		4
	1	9		1		9
	2	6		2		6
	9	17		17		9

Chromosome phase is unkown

Chromosome phase is kown

Algorithms for haplotype reconstruction

- Statistical methods
 - Parsimony (Clark,1990)
 - -EM
 - Excoffier and Slatkin (1995); Hawley and Kidd, (1995); Qin *et al.* (2002)
 - Bayesian
 - Stephens and Donnelly (2001); Niu et al. (2002)
- Rule-based methods
 - Minimum recombination principle
 - Qian and Beckmann (2002); Li and Jiang (2003); Baruch, *et al.* (2006)

Parsimony (Clark, 1990)

- 1. Start from a homozygote
- 2. Determine any other ambiguous sequence using the definitive haplotype from 1
- 3. Continue this procedure until all haplotypes are resolved or until no more new haplotypes can be found

Clark's Parsimony

- Disadvantages:
 - No starting point for algorithm;
 - Individuals may remain phase indeterminate;
 - Biased estimates of haplotype frequencies.

EM algorithm: Excoffier and Slatkin (1995)

- Numerical method of finding maximum likelihood estimates for parameters given incomplete data.
- 1. Initial parameter values: haplotype frequencies
- 2. *Expectation step*: compute expected values of missing data based on initial data
- 3. *Maximization step*: compute MLE for parameters from the complete data
- 4. Repeat with updated set of parameters until changes in the parameter estimates are negligible.

EM algorithm: Excoffier and Slatkin (1995)

EM algorithm

Expectation step: caculate the probability of each possbile diplotype for j^{th} phenotype

$$P_{j}(h_{k}h_{l})^{(g)} = \frac{n_{j}}{n} \frac{P(h_{k}h_{l})}{P_{j}^{(g)}}$$

Maximization step: update the haplotype frequencies

$$\hat{p}_{t}^{(g+1)} = \frac{1}{2} \sum_{j=1}^{m} \sum_{i=1}^{c_{j}} \delta_{it} P_{j} (h_{k} h_{l})^{(g)}$$

EM algorithm efficiency

- Heavy computational burden with large number of loci
 - Partition-ligation algorithm (Niu et al., 2002)
 - PL-EM (Qin et al., 2002)

- Accuracy and departures from HWE
 - Assumption of HWE in most EM-based methods
 - Robust to departure from HWE (Fallin and Schork, 2000)

Bayesian haplotype reconstruction

- PHASE (Stephens and Donnelly, 2001)
 - Based on coalescent model
 - Use Gibbs sampling
 - So far, very accurate, but also complicated.

Comparison of Parsimony, EM and PHASE

- PHASE performs better than parsimony and EM (Stephen, 2001)
- PHASE and EM-based methods exhibited similar performances (Zhang et al. 2001; Xu et al. 2002)

Haplotype inference using family data (1)

- Haplotype inference based on close relatives
 - Reduces haplotype ambiguity and improves the efficiency
- Rohde and Fuerst (2001) EM algorithm
 - Families with both parents and their children
 - The genotyped offspring reduce the number of potential haplotype pairs for both parents.
- Ding and Simianer (2006) EM algorithm
 - Families with only one parent available
 - Parent-child pair with one shared haplotype.

Haplotype inference using family data (2)

- Ding and Simianer EM algorithm
 - Families with only sibs

- Mixed family data
 - Complete families
 - Incomplete families
 - One parent
 - Only sibs

Comparison of four different strategies

			VI.	
Method name	Using family information?	Using LD?	Handling incomplete families?	
Complete-family-EM	YES	YES	NO	
(Rhode and Fuerst, 2001)	125	ILS		
Incomplete-family-EM	YES	YES	YES	
(Ding et al., 2006)			1 Lb	
GENEHUNTER	YES	NO	YES	
(Kruglyak et al., 1996)	ILS	NO		
PHASE	YES	YES	YES	
(Stephens et al., 2003)				

(Ding and Simianer, 2006)

Result for complete families

- ➤ Simulation program based on coalescent model (Schaffner et al.,2005): 30 trios, 20SNPs
- \triangleright *Discrepancy*: 1- *sum* (|estimated p actual p|)
- **Error rate**: the proportion of wrongly haplotyped individuals

Result for incomplete families

Running time of PHASE:

- ≥3.5 hs for the whole 100 datasets of 30 trios,187 SNPs (Marchini et al.,2006)
- > Running time will become prohibitive for large SNPs

Rule-based method

- Minimum recombination principle
 - Qian and Beckmann (2002); Li and Jiang (2003);
 Baruch, et al. (2006)
- Genetic recombination is rare
- Haplotype with fewer recombinants should be preferred in a haplotype reconstruction

Joint EM and rule-based algorithm for (grand-) daughter design

- Assumption of no recombination
 - EM algorithm to construct diplotype
- Taking into account recombination
 - Minimum recombination principle
 - Derive possible diplotypes of sire from all sireoffspring pairs in one sire family
 - Find the diplotype of sire that minimizes the number of recombinations in the sire family

Example:

Possible diplotypes	recom. events		
1. 54731722 31761329	47		
2. 51731729 34761322	46		
3. <u>51731722</u> 34761329	45		
4. 34731729 51761322	47		
5. 34761729 51731322	47		
6. 51761329 34731722	46		
7. 54731329 31761722	48		
8. 54731322 31761729	49		
9. 51731329 34761722	46		

Result

- ■10 sires
- 5 markers, 6 alleles with equal allele frequency each

TDT (Transmission Disequilibrium Test)

 Compares the distribution of transmitted and nontransmitted alleles by parents of affected offspring (Spielman et al. 1993)

	Non- transmitted allele		total
transmitted allele	M ₁	\mathbf{M}_2	
\mathbf{M}_1	a	b	a+b
$\mathbf{M_2}$	c	d	c+d
total	a+c	b+d	2n

If the marker is unlinked to the causative locus then we expect b=c, else, one of the alleles will tend to be transmitted more often

TDT (Transmission Disequilibrium Test)

- Good for fine-mapping, poor for initial detection
- Robust for population stratification/admixture
- Initially for test of linkage, currently used for association
- Extension of TDT
 - Multi allelic markers (Sham and Curtis, 1995)
 - Multiple siblings (Spielman et al., 1998; Boehnke et al., 1998)
 - Missing parental data (Sun, 1999)
 - Extended pedigree (Martin et al., 2000)
 - Quantitative traits (Allison,1997; Rabinowitz,1997; Sun,2000)

Haplotype-based TDT

- The original TDT and most of its extensions consider one marker at a time. Haplotypes are more informative than single markers.
- Two categories of haplotype-based TDT
 - Haplotype reconstruction first
 - Sethuraman (1997); Wilson (1997); Clayton and Jones (1999); Zhao et al. (2000); Zhang et al. (2003)
 - Implicit haplotype reconstruction
 - Dudbridge (2003)

Haplotype-based TDT vs TDT

Zhang et al. (2003)

Haplotype-based TDT

- Problem of multiple comparisons
 - Increase in the degree of freedom

Method to reduce degree of freedom

- Group the haplotypes
 - Estimated evolutionary relationships (Setman et al. 2001)
- Maximum identity length contrast
 - Compare the mean shared length of the transmitted haplotypes and the mean shared length of the nontransmitted haplotypes
 - Bourgain et al. (2000,2001,2002); Zhang et al. (2003)

Thanks FUGATO program of the German Federal Ministry of Education and Research

Thanks for your attention!