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Abstract 

Simulated populations included 7 generations and 40000 animals per generation. Fixed 

effects, residual and additive genetic variances for one continuous trait (T1) and liabilities for 

four categorical traits (T2 to T5) were simulated. QTL effects were simulated for T2 with 

recombination rates (r) of 0.00 or 0.01 and polymorphism information content (PIC) of 

markers of 0.9 or 0.7. Simulated heritabilities (h²) were 0.50 (T1), 0.25 (T3, T5) and 0.10 (T2, 

T4). Simulated additive genetic correlations (rg) were ±0.20. After dichotomization trait 

prevalences were 0.25 (T2, T5) and 0.10 (T3, T4). Phenotypes of 10000 animals from one 

generation (P1) or phenotypes and genotypes of 5000 animals and their parents (G2) were 

used for multivariate estimations. Most biased parameters were rg12 and rg14 in P1 (-33% to -

55%) and h²2 and rg45 in G2 (+36% to +52%). Correlations between true and predicted 

breeding values (BV) for the categorical traits did mostly not differ significantly between P1 

and G2. Selection on the basis of BV from P1 was significantly less effective than selection 

on the basis of genotype and BV from G2. Selection response was significantly lower with 

PIC=0.7 and r=0.00 than with PIC=0.9 and r=0.00 or r=0.01. 

Introduction 

Many important traits in animal breeding are categorical and often binary, violating the 

basic assumptions for genetic analysis in mixed linear models. Transformation which can be 

used to compensate for underestimation of linear estimates of heritabilities and residual 

correlations of non-linear traits may introduce relevant bias, especially in case of extreme 

prevalences (e.g. Abdel-Azim and Berger, 1999; Mäntysaari et al., 1991; Van Vleck and 

Gregory 1992). The magnitude of bias depends on data and pedigree structure and needs to be 

checked individually for any analyzed dataset. Transformation and check of transformation 
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reliability can be avoided by (co)variance component estimation in threshold or mixed linear-

threshold models. Implementation of such models is possible via Markov chain Monte Carlo 

methods like Gibbs sampling. As opposed to sire models, animal models fully use all 

available pedigree information, but implementation of animal threshold models is not always 

straightforward. Particularly with low trait prevalences and few observations per animals, 

problems with accuracy of (co)variance component estimates and convergence of the Gibbs 

chain may arise (Hoeschele and Tier, 1995; Luo et al., 2001; Moreno et al., 1997). 

In the horse, binary coding has been used for radiographic health traits, and high 

prevalences of radiologically visible alterations, mostly in the range of 10 to 25 percent, have 

been determined in the limbs of young Warmblood riding horses (Stock and Distl, 2006a, b; 

Willms et al., 1999; Winter et al., 1996). Because strength and soundness of the locomotory 

system is of great importance in all sectors of the horse industry and genetics were found to 

play a significant role for the development of radiographic findings, inclusion of radiographic 

health traits in the current breeding schemes has been suggested (Stock and Distl, 2005a, b). 

Reliably estimated genetic parameters provide the basis to do so. Relevant genetic 

correlations between the categorical traits and between the categorical traits on the one hand 

and linear body measures on the other hand imply genetic analyses in mixed linear-threshold 

animal models. Selection for radiographic health of the equine limbs should benefit from 

genetic evaluation in the threshold model (Meijering and Gianola, 1985; Matos et al., 1997). 

Furthermore, increasing knowledge on the molecular genetic determination of radiographic 

findings in the equine limbs (Böneker et al., 2006; Dierks and Distl, 2006) gives rise to the 

question how to optimally use phenotype and genotype information on radiographic health 

traits in genetic analyses and for selection.  

The aim of this study was to characterize the properties of multivariate estimation of genetic 

parameters and prediction of breeding values for categorical, continuous and molecular 

genetic data using linear-threshold animal models and Gibbs sampling. On the basis of 

simulated data the impact of data structure and quality of molecular genetic marker 

information on the accuracy of genetic parameter estimates and predicted breeding values and 

the expected response to selection was investigated in the context of important radiological 

health traits in the Warmblood horse. 

Material and methods 

Data simulation 

Simulated data were used for this study, with simulation parameters chosen according to the 

results of previous studies on radiographic findings in the limbs of Warmblood riding horses. 
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Simulation included fixed, residual and additive genetic effects for one continuous trait (T1) 

and liabilities of four categorical traits (T2 to T5), and QTL effects for the liability of one of 

the categorical traits (T2). Additive genetic effects (a) were normally distributed with a ~ 

N(0,Aσ²ai) and i = 1, 2, ..., 5, genetic variances (σ²a) were set to 4.8 (T1) or 1.0 (T2 to T5), 

and genetic covariances were chosen such that additive genetic correlations (rg) were rg12 = 

rg13 = 0.20 and rg14 = rg45 = -0.20. Additive genetic effects of offspring (aoffspring) were derived 

from additive genetic effects of their parents (asire, adam) and Mendelian sampling term (m) as 

aoffspring = 0.5 (asire + adam) + m with m ~ N(0,0.5Aσ²ai). Residual effects were normally 

distributed e ~ N(0,Iσ²ei) with residual variances (σ²e) such that heritabilities (h2) were h2
1 = 

0.50, h2
2 = h2

4 = 0.10, and h2
3 = h2

5 = 0.25. A fixed contemporary group effect was simulated 

with five levels per generation and two levels each represented in two subsequent generations. 

For T2 two QTL and two flanking markers per QTL with five alleles each were simulated, 

with one of the marker alleles being linked to the unfavorable QTL allele, i.e. the allele 

increasing the probability of T2. Marker alleles were randomly distributed and equally 

prevalent, and total QTL variance was set equal to the additive genetic variance. In order to 

study the effects of different quality of genetic marker information on the estimation of 

genetic parameters, three scenarios were simulated: no recombination between genetic 

markers and QTL, polymorphism information content (PIC) of 0.9 of all markers (r0p9); 

recombination rate of 0.01 between markers and QTL, polymorphism information content 

(PIC) of 0.9 of all markers (r1p9); no recombination between genetic markers and QTL, 

polymorphism information content (PIC) of 0.7 of all markers (r0p7). After simulation on the 

linear scale liabilities of the categorical traits were dichotomized to obtain trait prevalences of 

0.25 (T2, T5) or 0.10 (T3, T4). 

Each of the three simulated populations included 280,000 animals, evenly distributed over 7 

generations and with a male to female ratio of 1:1 in each generation. Per generation 9,000 

females and 400 males were randomly chosen as parents of the next generation. Each dam 

was randomly mated to five sires, and each sire was randomly mated to five (200 sires), 150 

(160 sires) or 500 dams (40 sires). Replicates (n = 10) were generated by drawing random 

samples of 10,000 animals from the fourth generation and tracing their pedigree back over 

three generations. For the genetic analyses, two different datasets were created within each 

replicate. Dataset P1 included all 10,000 animals with records for the continuous trait and the 

four binary traits, information on the fixed effects of sex and contemporary group, and 

pedigree information over three generations. Dataset G2 included 5,000 animals, randomly 

chosen from the animals included in dataset P1, plus their parents with respective information 
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on traits, sex, contemporary group and pedigree, and additional information on the marker 

genotype of the animals.  

Genetic analyses 

Genetic parameters were estimated and breeding values were predicted using Gibbs 

sampling with the threshold version of the Multiple Trait Gibbs Sampler for Animal Models 

(MTGSAM) (Van Tassell and Van Vleck, 1996), a software which supports multivariate 

genetic analyses of any combination of continuous and categorical traits. Random and 

residual effects are assumed to be normally distributed, and flat priors are used for the fixed 

effects. For our analyses, we chose a starting value of one for all additive genetic variances 

and a starting value of zero for all additive genetic covariances, and we fixed the residual 

covariances between all traits to zero. For the binary traits, residual variances were fixed to 

one and thresholds were fixed to zero in order to ensure identifiability of the model (Harville 

and Mee, 1984). A proper prior using an inverse Wishart distribution with minimum shape 

parameter (i.e. νIW = 7) was adopted for the genetic (co)variance matrix in order to ensure 

posterior propriety. The fixed effects of sex and contemporary group were considered in all 

analyses. The fixed effect of marker genotype was considered in the analysis of dataset G2 

only, distinguishing between individuals homozygous negative for the unfavorable alleles of 

all genetic markers, individuals heterozygous for the unfavorable allele of at least one of the 

genetic markers, and individuals homozygous for the unfavorable allele of at least one of the 

four genetic markers. 

yijlm = µ + SEXi + CONTj + al + eijlm (P1), and 

yijklm = µ + SEXi + CONTj + QTLk + al + eijklm (G2), 

with yijlm (yijklm) = observation on trait T1 (continuous) or on trait T2, T3, T4 or T5 

(binary) for the lth animal, 

 µ  = model constant, 

 SEXi = fixed effect of the sex of the animal (i = 1-2),  

 CONTj = fixed effect of the contemporary group (j = 1-5 for P1; j = 1-8 for G2),  

 QTLk = fixed effect of the QTL marker genotype (n = 1-3),  

 al  = random additive genetic effect of the lth animal (l = 1-30533 to 30766 

for P1; l = 1-26253 to 26664 for G2), and  

 eijlm (eijklm) = random residual.   

The total length of the Gibbs chain was set to 205000 in all analyses, and all samples after 

5000 rounds of burn-in were saved. Convergence of the Gibbs chain and the need for 

additional rounds of burn-in to be discarded was checked by visual inspection of sample plots. 
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Effective sample size (ESS) and Monte Carlo error (MCE) was calculated for all (co)variance 

estimates by the times series method implemented in the post-Gibbs analysis program 

POSTGIBBSF90 (Tsurata, 2005) with a thinning rate of ten. Un-thinned chains were used to 

calculate posterior means of additive genetic (co)variance, heritability and additive genetic 

correlation estimates. Bias of heritability and additive genetic correlation estimates was 

calculated as the mean relative deviation of the estimated values (parest) from the true, i.e. 

simulated, values (partrue). 

bias = (parest - partrue) / partrue 

Breeding values and selection 

True and predicted breeding values (BV) were compared in the sires of those 5,000 animals 

with trait records, which were included in both datasets of each replicate, using Pearson 

correlation coefficients and the procedure CORR of the Statistical Analysis System (SAS), 

version 9.1.3 (SAS Institute, Cary, NC, USA, 2005). True and predicted relative breeding 

values (RBV) were derived from true and predicted breeding values (BV) by standardization 

on a relative scale with a mean of 100 and a standard deviation of 20, using the sires of 

animals with trait records as the reference population for the standardization. Larger RBV for 

the continuous trait indicate genetic predisposition for higher values, lower RBV genetic 

predisposition for lower values of this trait. RBV for the binary traits were transformed so that 

larger RBV will mean that the animals are less likely and lower RBV will mean that the 

animals are more likely to transmit a predisposition for the particular trait. 

The response to selection with focus on the QTL trait was studied using either the RBV for 

T2 or the marker genotype or the RBV for T2 and the marker genotype as selection criteria. 

Response to selection was defined as relative decrease of the prevalences of the binary traits 

in the offspring of the selected sires compared to the offspring of all sires. Selected sires 

needed to have an above-average RBV for T2 (RBVT2 > 100) and/or to be homozygous 

negative for the unfavorable allele of all genetic markers. Only sires which were represented 

by at least 10 offspring with trait records were considered for selection. In each case and 

within each replicate, the expected response to selection was assessed by comparing the 

prevalences of the binary traits in the offspring of the selected sires and in all 5,000 animals 

with trait records, which were included in both datasets. 

 

Evaluation 

The influence of data structure and quality of genetic marker information on ESS, bias and 

correlation between true and predicted breeding values and the influence of the selection 
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criteria on the response to selection was tested via analysis of variance using the procedure 

GLM of Statistical Analysis Systems, (SAS), version 9.1.3 (SAS Institute, Cary, NC, USA, 

2005). Effective sample size, bias, correlation between true and predicted breeding values or 

response to selection was considered as dependent variable, and dataset (P1, G2) and quality 

of genetic marker information (r0p9, r1p9, r0p7) or selection criteria (RBVT2, marker 

genotype, RBVT2 and marker genotype) were considered as fixed effects. 

Results 

Convergence of the Gibbs chains was achieved after maximally 30,000 rounds of Gibbs 

sampling, leaving 175,000 to 200,000 rounds for analyses of posterior distributions. Mean, 

minimum and maximum ESS of heritabilities and selected additive genetic correlations by 

dataset and quality of genotype information on T2 are given in Table 1. ESS was significantly 

larger in the analyses of dataset G2 than in the analyses of dataset P1 for heritabilities of traits 

T1, T2, T4 and T5 and additive genetic correlation between T1 and T3 (P ≤ 0.02). The 

opposite was true with respect to the additive genetic correlation between T1 and T2 (P < 

0.01). No significant influence on ESS was determined for the quality of the genetic marker 

information. Mean MCE was 0.002 to 0.010 for the heritabilities and 0.001 to 0.004 for the 

additive genetic correlations in all analyses.  

Mean, minimum and maximum bias of heritabilities and additive genetic correlations by 

dataset and quality of genotype information on T2 are given in Table 2. Mean bias was largest 

for additive genetic correlations between T1 and T2 and between T1 and T4 in analyses of 

dataset P1 (-0.33 to -0.55) and for heritability of T2 and additive genetic correlation between 

T4 and T5 in analyses of dataset G2 (0.36 to 0.52). The analyzed dataset had a significant 

influence on the bias of the heritability estimates for T1 and T2 (P < 0.001) and of the 

estimated additive genetic correlations between T1 and T2 and between T1 and T4 (P < 0.01). 

Bias of heritability estimate for T2 was further significantly dependent on the quality of 

genetic marker information (P < 0.01), with lower means in scenario r0p7 than in scenarios 

r0p9 and r1p9. 

Correlations between true and predicted BV for traits T1 to T5 by dataset and quality of 

genotype information on T2 and for all sires of offspring with trait records and sires with ten 

or more offspring with trait records are given in Table 3. For all traits correlation coefficients 

increased with increasing number of informative offspring per sire. The dataset used for the 

genetic analyses had neither in all sires with informative offspring nor in the sires with ten or 

more informative offspring a significant influence on BV correlations for T2. In most cases 

BV correlations were higher in analyses of dataset P1 than in analyses of dataset G2. 
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However, BV correlations for T2 were significantly influenced by the quality of the genetic 

marker information, with significantly higher correlation coefficients in scenarios r0p9 and 

r1p9 than in scenario r0p7 (P < 0.001).  

Relative changes of prevalences of binary traits T2 to T5 after selection of sires for T2 by 

dataset and quality of genotype information on T2 are given in Table 4. Response to selection 

with respect to T2 was larger after selection on the basis of RBV for T2 from analyses of 

dataset P1 (-0.14 to -0.12) than after selection on the basis of polygenic RBV for T2 from 

analyses of G2 (-0.09) or marker genotype (-0.07 to -0.02). The prevalence of T2 was most 

effectively lowered, if both RBV for T2 from analyses of dataset G2 and marker genotype 

served as selection criteria (P < 0.001). Selection response for T2 was significantly influenced 

by the quality of genetic marker information, with larger prevalence decreases in scenarios 

r0p9 and r1p9 than in scenario r0p7 (P < 0.001). 

Conclusions 

Feasibility of multivariate estimation of genetic parameters and prediction of breeding 

values in mixed linear-threshold animal models using Gibbs sampling with data and pedigree 

structures similar to those encountered in the Warmblood horse has been shown. If genes or 

genome regions which do not fit in the polygenic model have been identified, combined use 

of phenotype and genotype information can increase the reliability of genetic analyses and the 

response to selection. 
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Table 1. Mean (minimum, maximum) effective sample size of estimated heritabilities (h²) 

and selected additive genetic correlations (rg) for the continuous trait T1 and the binary traits 

T2 to T5 by dataset (P1, G2) and for different scenarios with respect to recombination rate (r) 

between markers and QTL and polymorphism information content (PIC) of markers; values 

for r = 0.00 and PIC = 0.9 in the first line, for r = 0.01 and PIC = 0.9 in the second line, and 

for r = 0.00 and PIC = 0.7 in the third line. 

Dataset Genetic parameter 
P1 G2 

h2
1 641.7 (533.5, 778.6) 1620.5 (1417.3, 1753.0) 

 652.5 (504.5, 829.9) 1640.8 (1330.0, 1881.2) 
 628.1 (371.6, 858.4) 1655.6 (1487.9, 1949.0) 
   

h2
2 93.8 (36.4, 117.9) 102.2 (62.8, 129.2) 

 86.5 (59.6, 119.8) 105.2 (83.6, 120.9) 
 69.8 (42.7, 100.7) 100.1 (75.5, 120.5) 
   

h2
3 79.0 (25.9, 113.0) 84.8 (58.9, 102.4) 

 68.7 (30.7, 105.5) 81.2 (42.3, 117.4) 
 83.9 (49.6, 113.7) 91.6 (54.1, 141.7) 
   

h2
4 53.4 (31.5,   77.2) 82.0 (46.2, 115.2) 

 57.2 (34.3, 108.0) 82.8 (64.6, 114.6) 
 76.2 (50.8, 102.5) 70.9 (37.0,   91.5) 
   

h2
5 131.1 (71.7, 179.7) 207.1 (159.8, 284.2) 

 121.8 (79.5, 167.8) 198.4 (100.8, 289.6) 

Heritabilities 

 129.3 (95.9, 174.1) 227.1 (141.5, 274.9) 
    

    

rg12 435.7 (306.8, 639.8) 314.6 (240.9, 451.0) 
 464.0 (191.0, 701.5) 337.0 (172.1, 445.7) 
 347.2 (222.0, 482.4) 346.4 (257.6, 474.2) 
   

rg13 383.8 (221.8, 497.4) 430.9 (201.5, 650.8) 
 384.6 (  75.2, 662.9) 459.5 (238.8, 652.6) 
 353.4 (181.9, 523.0) 449.4 (194.5, 723.8) 
   

rg14 257.1 (127.9, 371.0) 281.5 (158.0, 389.1) 
 291.2 (191.9, 514.9) 284.2 (111.2, 419.9) 
 278.3 (170.7, 470.7) 245.5 (172.3, 334.4) 
   

rg45  164.7 (  83.0, 236.4) 145.9 (112.3, 182.1) 
  159.8 (  91.2, 221.1) 164.5 (117.2, 223.2) 

Additive genetic 
correlations 

  163.6 (123.8, 241.2) 156.8 (104.1, 205.1) 
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Table 2.  Mean (minimum, maximum) relative bias of estimated heritabilities (h²) and 

selected additive genetic correlations (rg) for the continuous trait T1 and the binary traits T2 

to T5 by dataset (P1, G2) and for different scenarios with respect to recombination rate (r) 

between markers and QTL and polymorphism information content (PIC) of markers; values 

for r = 0.00 and PIC = 0.9 in the first line, for r = 0.01 and PIC = 0.9 in the second line, and 

for r = 0.00 and PIC = 0.7 in the third line. 

 Dataset Genetic parameter 
 P1 G2 

h2
1  0.061 (-0.013, 0.169) -0.064 (-0.089, -0.034) 

  0.060 (-0.014, 0.165) -0.064 (-0.087, -0.034) 
  0.059 (-0.010, 0.168) -0.064 (-0.089, -0.033) 
    

h2
2  0.068 (-0.321, 0.460) 0.506 (0.233, 0.706) 

  0.078 (-0.330, 0.490) 0.519 (0.208, 0.696) 
  -0.134 (-0.414, 0.171) 0.467 (0.219, 0.672) 
    

h2
3  0.013 (-0.218, 0.176) -0.057 (-0.218, 0.067) 

  0.019 (-0.205, 0.167) -0.055 (-0.177, 0.049) 
  0.024 (-0.185, 0.180) -0.045 (-0.178, 0.082) 
    

h2
4  0.160 (-0.143, 0.434) 0.087 (-0.135, 0.238) 

  0.141 (-0.162, 0.390) 0.080 (-0.140, 0.240) 
  0.150 (-0.201, 0.418) 0.078 (-0.131, 0.242) 
    

h2
5  -0.018 (-0.143, 0.088) 0.068 (-0.065, 0.147) 

  -0.010 (-0.156, 0.087) 0.068 (-0.061, 0.157) 

Heritabilities 

  -0.015 (-0.143, 0.081) 0.066 (-0.071, 0.156) 
     

rg12  -0.503 (-0.958, 0.040) -0.082 (-0.417, 0.637) 
  -0.488 (-0.925, 0.014) -0.066 (-0.381, 0.624) 
  -0.331 (-0.908, 0.131) -0.101 (-0.447, 0.501) 
    

rg13  -0.056 (-0.335, 0.360) -0.017 (-0.449, 0.438) 
  -0.060 (-0.320, 0.366) -0.019 (-0.436, 0.404) 
  -0.065 (-0.330, 0.315) -0.021 (-0.440, 0.376) 
    

rg14  -0.494 (-0.904, 0.026) 0.008 (-0.416, 0.410) 
  -0.484 (-0.916, -0.007) 0.010 (-0.378, 0.470) 
  -0.473 (-0.825, 0.031) -0.004 (-0.405, 0.456) 
    

rg45  0.127 (-0.598, 0.753) 0.364 (-0.813, 0.923) 
  0.140 (-0.567, 0.760) 0.369 (-0.834, 1.033) 

Additive genetic 
correlations 

  0.163 (-0.652, 0.795) 0.376 (-0.806, 0.960) 
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Table 3. Correlations between true and predicted breeding values for the continuous trait T1 

and the binary traits T2 to T5, in all sires with offspring with trait records and sires with 10 or 

more offspring with trait records for different scenarios with respect to recombination rate (r) 

between markers and QTL and polymorphism information content (PIC) of markers in the 

analyses of datasets A1 to C2; values for r = 0.00 and PIC = 0.9 in the first line, for r = 0.01 

and PIC = 0.9 in the second line, and for r = 0.00 and PIC = 0.7 in the third line. 

All sires 
(n = 273-303, noff = 17.43) 

Sires with ≥10 offspring 
(n = 193-198, noff = 24.78) 

Trait 

A1 C2 A1 C2 
0.849 0.870 0.935 0.914 
0.849 0.870 0.934 0.914 

T1 

0.849 0.870 0.935 0.914 
      

0.514 0.484 0.587 0.535 
0.513 0.483 0.585 0.531 

T2 

0.417 0.479 0.490 0.532 
      

0.635 0.626 0.728 0.671 
0.634 0.625 0.728 0.670 

T3 

0.634 0.623 0.727 0.667 
      

0.481 0.469 0.525 0.476 
0.480 0.469 0.524 0.476 

T4 

0.481 0.471 0.525 0.478 
      

0.664 0.645 0.752 0.700 
0.664 0.645 0.752 0.700 

T5 

0.665 0.646 0.753 0.700 
n: number of sires; noff: average number of offspring per sire. 
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Table 4. Relative changes of prevalences of binary traits T2 to T5 after selection of sires for 

T2 based on the relative breeding value for this trait (RBVT2,), on genotype or on genotype 

and RBVT2, for different scenarios with respect to recombination rate (r) between markers 

and QTL and polymorphism information content (PIC) of markers using predicted breeding 

values from analyses of datasets P1 and G2; values for r = 0.00 and PIC = 0.9 in the first line, 

for r = 0.01 and PIC = 0.9 in the second line, and for r = 0.00 and PIC = 0.7 in the third line. 

Trait Prediction basis Selection basis  
T2 T3 T4 T5 

 -0.135 -0.065 +0.029 +0.032 
 -0.134 -0.071 +0.030 +0.037 

P1 RBVT2

 -0.119 -0.070 +0.018 +0.053 
       

 -0.085 -0.124 -0.004 +0.034 
 -0.090 -0.127 +0.003 +0.042 

RBVT2

 -0.092 -0.123 -0.006 +0.045 
      

 -0.167 -0.146 -0.021 +0.103 
 -0.164 -0.150 -0.013 +0.106 

RBVT2,  
marker genotype 

 -0.120 -0.144 -0.024 +0.119 
      

 -0.072 +0.030 +0.008 +0.021 
 -0.071 +0.030 +0.010 +0.021 

G2 

marker genotype 

 -0.022 +0.030 +0.008 +0.021 
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