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1 Introduction

Quantitative trait loci (QTL) may not only affect the mean of a trait but also its variability. A
special aspect is the variability between multiple measurements of genotyped animals, for example
the within litter variance of piglets birth weights. The authors Damgaard et al. (2003) state the
view, the within litter variance influences the sow productivity. Evaluating the available data of
pigs they assign the within litter standard deviation as maternal trait and detected a maternal
additive genetic variance for the within litter standard deviation. A heritability estimate for this
trait was 8%, which was significantly larger than zero.
Our present study exemplary adapts the maternal trait by the non-normally distributed sample
variance of birth weights within litter and benefits from the adequate approximation of its distri-
bution. To detect QTL effects in the daughter-design a generalized linear model with an identical
link function was applied. Adapted test statistics were constructed to evaluate the test problem
in terms of statistical power and desired error probability under the null hypothesis H0: No QTL
with effect on the within litter variance is segregating. Furthermore we take a look on the estimates
of the QTL effect and the QTL position. To compare the advantages of this method with more
common tools of statistics, a weighted regression approach was developed, taking a transformed
sample variance as observation.

2 Theory

It is assumed, that a population of pigs has two alleles at the QTL denoted by Q and q. Further
we look on a fixed number N of sires in our studies, which are drawn by chance of the popula-
tion. Every sire is mated with n unrelated dams of the population. We pick out one daughter per
mating and consider the offspring’s birth weight as a multiple measurement. The sample variance
of weights at birth within one litter is taken as observation for every daughter. Those daughters,
who inherit the QTL allele Q from the presumed heterozygote sire, feature uniformity of birth
weights. Daughters inheriting q show an increased variability of birth weights of their offspring.
Thus, from the breeder’s perspective, the positive effect of the QTL, that means the lower within
litter variance, is inherited with the QTL allele Q.
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The sires may have the marker genotype of kind ml,1,ml,2, where l = 0, 1, . . . , L denotes the
marker position on the chromosome. The sire’s two marker alleles are denoted by ml,1 on the
paternal allele and ml,2 on the maternal allele, respectively, for every marker position. It is not
possible to determine which sire is heterozygote or homozygote at the QTL a priori. After the
sires are genotyped, we suppose that all daughters are fully informative, therefore we only need
to consider paternal alleles of daughters. The recombination rates are calculated by Haldane’s
mapping function. We consider intervals flanked by markers of type ml,rml+1,s with r, s ∈ {1, 2}
specifying the marker alleles. The transmission probability for inheriting the QTL allele Q of the
heterozygote sire with genotype Qq is determined for every desired position d = 0, 1, . . . , D (usually
in steps of 1 cM) on the chromosome.

2.1 Model and distribution of the data

The phenotypic value Yijk,d of the piglets within one litter are described by the following model,
consisting of independent components with sire i = 1, . . . , N , daughter j = 1, . . . , n and piglet
k = 1, . . . , nij . Let nij denote the litter size and capital letters are used for random variables.

Yijk,d = µij + Aijk + Gijk + 1{Q},ij,dEijk + c∗
(
1− 1{Q},ij,d

)
Eijk (1)

Whereby µij denotes the constant mean value within litter, Aijk declares the normally distributed
mendelian sample ∼ N

(
0, 1

2σ2
polygene

)
, Gijk is the non-normally distributed additive QTL effect

depending on the piglet’s genotype and Eijk means the normally distributed random deviation
∼ N

(
0, σ2

e

)
. The indicator function 1{Q},ij,d takes the value 1, if the daughter ij inherits the

QTL allele Q at the unknown QTL position d from the sire i. In case of inheriting q the random
deviation Eijk of the model (1) is altered by a factor c∗ ∈ (0,∞).
After transforming the random variables Yijk,d into variables Xijk,d, which only consist of the
non-constant terms of the phenotypic value within one litter, the expected value and within litter
variance are conditional on Aδ =

{
1{Q},ij,d = δ

}
, δ ∈ {0, 1}

E (Xijk,d|Aδ) = 0

V (Xijk,d|A1) =
1
2
σ2

polygene + σ2
QTL + σ2

e =: τ2 + σ2
QTL (2)

V (Xijk,d|A0) =
1
2
σ2

polygene + σ2
QTL + c2

∗σ
2
e =: τ2

∗ + σ2
QTL (3)

τ2 = 1
2σ2

polygene +σ2
e summarizes the variance of the normally distributed effects of the phenotypic

value under the condition of inheriting the QTL allele Q and τ2
∗ = 1

2σ2
polygene + (c∗σe)2 includes

the altered residual variance component.

The parameter c2 is now defined to specify the ratio of the within litter variance when the daughter
ij inherits the QTL allele q to the within litter variance in case of inheriting the paternal allele Q

from the presumed heterozygote sire

c2 =
E

(
S2

ij,d|1{Q},ij,d = 0
)

E
(
S2

ij,d|1{Q},ij,d = 1
) =

V(Xijk,d|1{Q},ij,d = 0)
V(Xijk,d|1{Q},ij,d = 1)

=
τ2
∗ + σ2

QTL

τ2 + σ2
QTL

(4)

Therefore it appears a test problem, whether the QTL effect on the within litter variance actually
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exists, that means the increased sample variance S2
ij,d is conditioned by the inherited paternal QTL

allele, or the ratio c2 is equal to 1.

Because the investigated sample variance consists of non-normally distributed traits, the con-
ditional distribution of S2

ij,d is not χ2. For example, the distribution of S2
ij,d conditional on{

1{Q},ij,d = 1
}

coincides approximately with a gamma distribution Γµ,νij
with expected value

µ and variance µ2

νij
, where

µ = τ2 + σ2
QTL and νij =

nij − 1
2

(
τ2 + σ2

QTL

)2

(τ2 + 2σ2
QTL)τ2 + σ4

QTL

(
nij

4 + 1
4 + 1

nij

) (5)

2.2 Generalized linear models

Let Tij,d denote the random variable, which is realized by the according transmission probability
depending on the observed flanking marker alleles per daughter ij at the investigated QTL position
d ∈ {0, 1, . . . , D} and use tij,d to describe the realized transmission probability per individual
ij. In order to fit the sample variance in an adapted manner, a multiplicative model will be
considered. Let βd = (u1,d, . . . , uN,d, b1,d, . . . , bN,d)T denote the parameter vector consisting of the
mean value ui,d per sire and the parameter bi,d describing the relation between the observed traits
s2

ij per daughter and the inherited paternal QTL allele expressed by the individual transmission
probabilities at the investigated position d. The sample variance is now described by the following
model

S2
ij,d = {ui,d + bi,dTij,d} · εij,d (6)

Where εij,d are independently gamma distributed random variables with expected value 1. The
conditional expected value of S2

ij,d given the observed marker alleles is µij,d = ui,d + bi,dtij,d. The
expectation is of linear form already, thus the identical link function is used to receive the linear
predictor ηij,d = µij,d.

The application of the generalized linear model theory (McCullagh & Nelder, 1989; Fahrmeir &
Kaufmann, 1985) provides several test statistics to check the local null hypothesis H0,d : There
exists no QTL on the investigated position d affecting the within litter variance, which is equivalent
to

H0,d : b1,d = . . . = bN,d = 0 or µd = µ0 (7)

To test H0,d the following exemplary test statistic is constructed by utilization of the deviance D

L̂d =
1

φ̂Nn,d

[
D(s2, µ̂0

Nn)−D(s2, µ̂Nn,d)
]

(8)

which coincides with the likelihood-ratio test but includes a consistently estimated dispersion
parameter φ̂Nn,d. To check the global null hypothesis H0 : There exists no QTL on the chromosome
with effect on the within litter variance or equivalent H0 : b1,d = . . . = bN,d = 0 for d = 0, 1 . . . , D
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the test statistic L̂ is proposed

L̂ = max
d∈{0,1,...,D}

L̂d (9)

The permutation test is suggested to construct an adequate threshold value, which leads to the
rejection of the null hypothesis (Churchill & Doerge, 1994). The statistic L̂ has been verified by
simulations. If the null hypothesis H0 is rejected, the QTL is estimated on that position, which
provides the highest value of the test statistic L̂d over all investigated positions d ∈ {0, 1, . . . , D}.

2.3 Weighted regression

To compare the results from section 2.2 with more common tools of statistics, e.g. Haley &
Knott (1992), a weighted regression approach was achieved. Applying the logarithm on the sample
variances, the data are approximated by a normal distribution. The linear model for the sample
variance on a fixed investigated position d ∈ {0, 1, . . . , D} is defined by

lnS2
ij,d = ui,d + bi,dTij,d + εij,d (10)

Where εij,d are approximately normally distributed random variables with expected value 0 and
Tij,d as described above. The parameter ui,d denotes the mean value per family and bi,d declares
the linear connection between the observations ln s2

ij and the inherited paternal QTL allele at
the investigated QTL position d. An adapted design matrix is arranged by use of the individual
transmission probabilities and the regarding weights are constituted by nij−1

2 . The adequate test
statistic Fd is constructed to check the local null hypothesis H0,d, e.g. Seber (1977). To test the
global null hypothesis H0 the permutation test is used to determine the threshold value and the
global test statistic is

F = max
d∈{0,1,...,D}

Fd (11)

3 Simulation studies

When genotyping the individuals of the population we assume markers in intervals of 10 cM on
a chromosome of length 100 cM (D = 99). So we have 11 markers at our disposal (L = 10). In
the simulation we placed a single QTL at position 25 cM (between the third and fourth marker).
We simulated the transformed birth weights Xijk,d with N = 4 sires and n = 200 daughters per
sire. The litter size is poisson distributed with mean value of 10. The factor c∗ varies from 1 to
1.4 by 0.1. The gene frequency is presumed to be 1

2 . Covariances between the maternal effects and
the direct effects of the piglet were omitted. The flanking marker alleles were drawn by chance
corresponding to the inherited paternal QTL allele and the recombination rates.
The simulation was repeated 100 times for every investigated factor c∗. 10,000 permutations of
the first dataset were used to determine the chromosomewise threshold value. This critical value
was also applied for the following 99 repetitions.
Table 1 summarizes the results of evaluating the simulated data, which are achieved using the test
statistics F and L̂. It is obvious, that with increasing factor c∗ the empirical power power emp
increases. The empirical power was determined as the ratio of significant repetitions of simulations
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test statistic simulated factor of random deviation c∗
1.0 1.1 1.2 1.3 1.4

power emp F 0.04 0.50 0.88 0.90 0.90
L̂ 0.03 0.62 0.88 0.90 0.90

mean detec F 0.4400 0.3568 0.2552 0.2674 0.2647
L̂ 0.4619 0.3556 0.2727 0.2656 0.2647

variance detec F 0.1074 0.0643 0.0158 0.0230 0.0176
L̂ 0.1088 0.0600 0.0280 0.0207 0.0163

Table 1: Summary of simulations (10% of the repetitions with exclusive homozygote sires)

to the total number of repetitions. The empirical power should not exceed the value of 90%,
because 10% of the repeated simulations created exclusively homozygote sires at random (all
N = 4 sires are homozygote) and therefore a QTL effect on the within litter variance can not
be detected. Under the null hypothesis H0 (c = 1), the α-level of 5% holds for the verified test
statistics. Furthermore in table 1 mean detec declares the average of detected QTL positions and
variance detec is the sample variance of estimated positions. With c∗-values of 1.2 and larger,
where the power is already very high, both models perform equally well. But with c∗ equal to
1.1 (c = 1.09) the generalized linear model clearly outperforms the weighted regression approach
and provides an extra gain of 12% empirical power. From this summary it is obvious, that the
generalized linear model exemplary with use of the test statistic L̂ is, in terms of empirical QTL
detection power, superior to the test statistic F resulting from the linear model.
For more details the reader is referred to Wittenburg et al. (2006).
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