

57th Annual Meeting of the European Association for Animal Production, Antalya, TURKEY, September 17-20, 2006

Abstract No. 250, Session G17

Microsatellites applicable for determination of genetic diversity in Sea eagle population from Sachalin

L. Putnova¹, A. Hovorkova², B. Kral³, V. Masterov⁴, M. Hovorka³, P. Humpolicek¹*

¹Department of Animal Morphology, Physiology and Genetics, MZLU, Zemedelska 1, 61300 Brno, Czech Republic. ²Laboratory of Molecular Genetics, Genservice Ltd., Palackeho 1/3, 61242 Brno, Czech Republic. ³The Zoological garden of the Brno City, U zoologicke zahrady 46, 63500 Brno, Czech Republic. ⁴Department of Vertebrate Zoology, Biological faculty of Moscow State University, Leninske gory 1-12, Russia

Introduction

No microsatellite markers have been described for Sea eagle (Haliaeetus pelagicus). Application of such markers is essential to the management and conservation of this species. From this reason we used 16 microsatellite markers developed for Spanish imperial eagle (Martinez-Cruz et al. 2002) and 3 microsatellite markers developed for aquila and haliaeetus eagles (Busch et al. 2005) to assess the individual identification, parentage analysis and genetic variability of Sea eagle population from Sachalin.

Material and Methods

The investigated population consisted of 32 animals from Sachalin. The genetic variability of 19 eagle microsatellite markers was studied and analysed by two multiplex PCR reactions – I. Multiplex: 16 MS (Aa02, Aa04, Aa11, Aa15, Aa26, Aa27, Aa35, Aa36, Aa39, Aa43, Aa49, Aa50, Aa51, Aa53, Aa56, Aa57) and II. Multiplex: 3 MS (IEAAAG04, IEAAAG05, IEAAAG12). Fragment analyses were performed on ABI PRISM 310 Genetic Analyser (Figure 1 and 2).

Results and Conclusion

Results are summarized in Table 1-2. MS were tested in three other eagle species: the white-tailed eagle (Haliaeetus albicilla), the golden eagle (Aquila chrysaetos) and the imperial eagle (Aquila heliaca). Cross-species amplification showed, that these markers were also polymorphic in these species.

Tab. 2. Average theoretical heterozygosity (tH), average polymorphism information content (PIC), combined exclusion probability of CEP1: paternity exclusion, CEP2: one parental genotype unavailable, CEP3: parentage exclusion.

Panel of 19 MS							
Sea eagle (Haliaeetus pelagicus)							
tH	0.1797						
PIC	0.1623						
CEP1	0.9061						
CEP2	0.6737						
CEP3	0.9815						

Tab. 1. Number of founded alleles (NA), their sizes, frequencies, real heterozygosity (H), theoretical heterozygosity (tH), polymorphism information content (PIC) and exclusion probabilities (PEs) in Sea eagles.

MS	NA	Size (bp)	Allele frequency	н	tH	PIC	PE1	PE2	PE3
Aa02	1	130	1.000	0.000	0.000	0.000	0.000	0.000	0.000
Aa04	1	123	1.000	0.000	0.000	0.000	0.000	0.000	0.000
Aa11	1	236	1.000	0.000	0.000	0.000	0.000	0.000	0.000
Aa15	2	192	0.825	0.343	0 200	0.246	0 123	0.041	0 202
	2	196	0.175		0.200	0.240	0.120	0.041	0.202
Aa26	1	132	1.000	0.000	0.000	0.000	0.000	0.000	0.000
Aa27	2	98	0.810	0.312	0.308	0.260	0.130	0.047	0.211
		104	0.190						
Aa35	2	230	0.031	0.062	0.060	0.058	0.029	0.001	0.056
		236	0.969						
Aa36	2	103	0.790	0.281	0.331	0.276	0.138	0.054	0.221
	2	109	0.210						
		178	0.203						
		180	0.156	0.750	0.782	0.748	0.570	0.390	0.750
Aa39	5	188	0.219						
		190	0.297						
		192	0.125						
Aa43	1	95	1.000	0.000	0.000	0.000	0.000	0.000	0.000
Aa49	1	148	1.000	0.000	0.000	0.000	0.000	0.000	0.000
4250	2	215	0.047	0.093	0.089	0.085	0.042	0 004	0.079
	-	217	0.953						
Aa51	1	242	1.000	0.000	0.000	0.000	0.000	0.000	0.000
Aa53	1	118	1.000	0.000	0.000	0.000	0.000	0.000	0.000
Aa56	1	236	1.000	0.000	0.000	0.000	0.000	0.000	0.000
		116	0.266						
Aa57	4	118	0.266	0.625	0.653	0.585	0.371	0.219	0.528
		122	0.453						
		124	0.016						
		214	0.161						
IEAAAG04	4	218	0.677	0.281	0.497	0.456	0.279	0.129	0.441
		226	0.129						
		238	0.032						
IEAAAG05	1	126	1.000	0.000	0.000	0.000	0.000	0.000	0.000
		104	0.156						
IEAAAG12	3	108	0.750	0.468	0.404	0.366	0.209	0.081	0.342
		112	0.094						

Figure 1. Electropherogram of multiplex I analyzed data

Peaks correspond to individual loci in ascending order of size: Aa43 (yellow), Aa27 (green), Aa36 (red), Aa53 (green), Aa57 (blue), Aa04 (red), Aa02 (yellow), Aa26 (green), Aa49 (red), Aa39 (yellow), Aa15 (green), Aa50 (blue), Aa35 (yellow), Aa56 (green), Aa11 (blue) and Aa51 (red)

Figure 2. Electropherogram of multiplex II analyzed data

Supported by Eurasian Regional Association of Zoos and Aquariums (EARAZA) and by Czech Science Foundation (no. 523/03/H076).

Author's address

Department of Animal Morphology, Physiology and Genetics, Mendel University of Agriculture and Forestry, Brno Zemedelska 1 613 00, Czech Republic, email: putnova@mendelu.cz