Reliable computing in estimation of variances in swine

Ignacy Misztal University of Georgia USA

Desirables

- Multi-trait of correlated and important traits
- Reflect nature of traits:
 - Normally distributed?
 - Continuous, categorical
 - censored, hazard (survival),...
 - Discrete or longitudinal?
 - Maternal effects? Correlated?
- Account for "important" as opposed to significant effects
- Different purposes
 - Reflect biology of traits
 - Genetic evaluation

Practical estimation

- Edit data
- Select model according to limitations
- Run program (ASREML?)
- Do results make sense?
- If yes, ☺
- If no:
 - time available: refine model and continue
 - Time ran out: justify and submit!

Typical methodologies

- General REML
 - DF
 - -EM
 - -AI
- REML by canonical transformation
- MCMC
 - Simple
 - Optimized

General REML (EM & AI)

- Cost t³, animal^{2...3}
- EM
 - Stable (except RRM)
 - Slow (50-200... rounds)
 - Simple to program
- Al
 - Fast (4-200 ... rounds)
 - Heuristics needed
 - Complex to program

REML - cont

- Good with small data sets
- Breaks down with many traits

- Canonical transformation
 - Low cost with large number of traits
 - Model limitations
- Hard to determine formulas / program for complex models (e.g., threshold, censored,...),especially MT

MCMC

- Simple to program incl. complex models
- Small memory requirements
- Speed dependent on optimization
- Details determine quality
- Convergence sometimes hard to determine
- Priors
 - Can make any model converge
 - Flat priors good for large but not small data sets
- No problem with many traits if optimized

Optimization with Gibbs samplers

Iteration on data

- Natural choice for RRM
- Hard with maternal effects or irregular models
- Storage of only single-trait matrices (a la canonical transformation)
 - No problem with many random effects
 - Missing traits predicted
 - Different designs through pseudo-random effects

Selected Projects at UGA

Livestock Science 101 (2006) 208-218

www.elsevier.com/locate/livsci

Genetic study of individual preweaning mortality and birth weight in Large White piglets using threshold-linear models

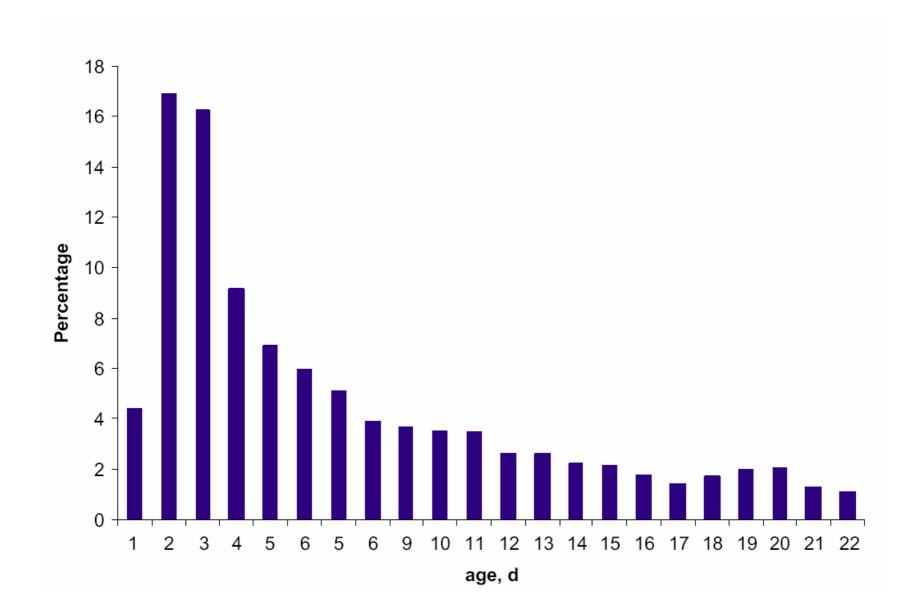
J. Arango^{a,*,1}, I. Misztal^a, S. Tsuruta^a, M. Culbertson^b, J.W. Holl^b, W. Herring^b

^a 306 Department of Animal and Dairy Science, the University of Georgia, Athens, GA 30602-2771, USA ^b Smithfield Premium Genetics, Roanoke Rapids, NC 27870, USA

Received 23 June 2005; received in revised form 10 November 2005; accepted 24 November 2005

Traits

- Number of stillborn
- Mortality as f(days)
- Birth weight (not for stillborn)



Attempts and Problems

- Issues
 - Some traits binary
 - Some traits direct (BW), some maternal, some uncertain (stillbirth)
- Initial plans
 - All traits altogether
 - Mortality as continuous
- Convergence problems
 - Limited data with binary variables, also low incidences
- Final choices
 - Mortality treated as one, early, or late
 - Several models with maternal effects

Models by trait combination for individual piglet birth weight, preweaning mortality, and litter farrowing mortality

Model	Trait combination ^a							
	BW	ТМ	SB	ELM	EM	LM	NBD	
1			_	_	_	_	_	
2		_			_	_	_	
3	_	_		_			_	
4		—	_		_	_		

^a BW=piglet birth weight; TM=total preweaning mortality including stillbirth; SB=stillbirth; ELM=preweaning mortality; EM=early preweaning mortality; LM=late preweaning mortality; NBD=number of piglet born dead at litter level.

Methodology

- Program THRGIBBSF90 (Lee and Tsuruta)
 - Any number of categorical and linear traits
 - Flat priors
 - Optimizations:
 - Block sampling by traits and direct-maternal
 - Single-trait left-hand side in pieces created once
 - Up to 250,000 samples required for some models
 - Computing up to a few days

Estimation of genetic correlation between purebreds and crossbreds

- Purebreds only paternal lines
- Crossbreds: dams identified but no pedigrees

Parameters of crossbred model (Zumbach et al., 2006)

Terminal cross model by Lo et al. (1997): $y_A = ... + Z_A \begin{bmatrix} u_A & ...+ e_A \end{bmatrix}$ $y_C = ... + Z_{AC} \begin{bmatrix} u_{AC} & + Z_D u_D & ...+ e_C \end{bmatrix}$

- A –purebred
- C-crossbred
- y trait value
- u additive effects; d dam effects

Computing

- AI REML
- If maternal effects fit for purebreds:
 - Convergence 5 → 200 rounds
 - Very small variance for maternal
- Old guideline for estimation of maternal effects (Quaas): enough MGS (or dams) with own records

Analyzes of number of born alive and dead

- First parity only
 - Backfat
 - Days to reach 113.5 kg
- Three parities
 - Number of born alive
 - Number of born dead
- Born dead treated as categorical
- All traits too many!

Analyzes (Arango et al., 2005)

- First model
 - Number of born alive in first parity
 - Number of born dead in first parity
 - Backfat
 - Days to reach 113.5 kg
- Second model 3 parities
 - Number of born alive
 - Number of born dead (categorical)
- No major computing problems large data sets

Survival for sows

- Many reasons for disposal
- Why sow disposed?
 - Genes (QTLs) for each reason separately?
 - General poor fitness?
- Few general categories for disposal
 Reproduction, disease, other

Can all be analyzed jointly?

Traits combinations

Parity at Disposal

Repro	Disease	Other
2	2+	2+
3+	3	3+
1+	1+	1

One trait observed, others censored

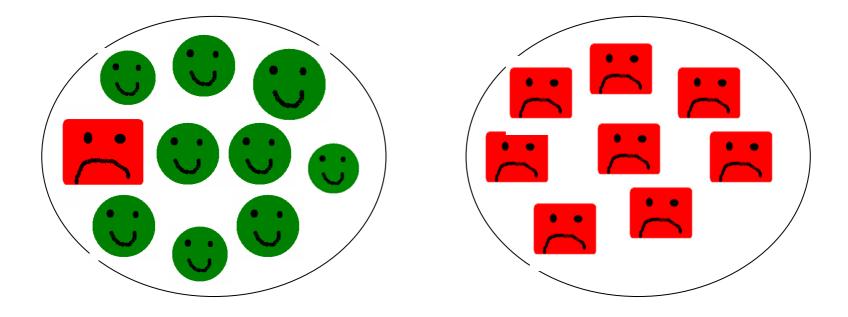
Computing (Arango et al., 2005)

Rework of existing Gibbs samplers to censored

Traits categorical – no convergence

Traits linear – slow mixing but convergence

Competition effects (Muir and Schinkel, 2002)



Competition model

d_i, c_i -- direct and competitive effects for animal i

$$y = \dots d_i + \sum c_j \dots + e \quad var(c,d) = G_0 \otimes A$$

All c's in $\sum c_j$ contribute to same effect

Issues and experiences (Arango et al., 2005)

- Implementation with simple MCMC and REML programs without modifications – optimized versions did not work!
- Good results with simulated data
- Real data set convergence problems due to very flat likelihood
- Corr(d,c) dropped, L computed for several values of var(c) similar to DF REML
- Model not realistic -- expression of competitiveness not linear but categorical

Fertility in Uruguayan Herefords (Urioste et a., 2006)

• Traits

- days from exposure to bull to conception
- 3 parities
- some cows do not calve in some years
- Ways of treating missing calvings
 - Penalized (missing = max+20d)
 - Censored
 - 2 traits: days + calving success (binary)

Analyses and results

- Some 5000 cows with data
- 3-6 traits analyzes
- Problems until fixed effects refined
- Split data correlations of EBV for days
 - Penalized: 0.4
 - Censored: 0.48
 - Threshold-linear: 0.65
- Censored model less correct?

Changes in genetic parameters over time

Genetic parameters assumed constant in time prediction of correlated responses

Is this correct?

Multitrait random regression model (Tsuruta et al.)

$$y_{ijknp} = "fixed" + \sum_{m=0}^{1or2} a_{mp} z_m + e_{ijjnp}$$

z = first order Legendre polynomial on year of birtha = additive genetic effect with RR on year

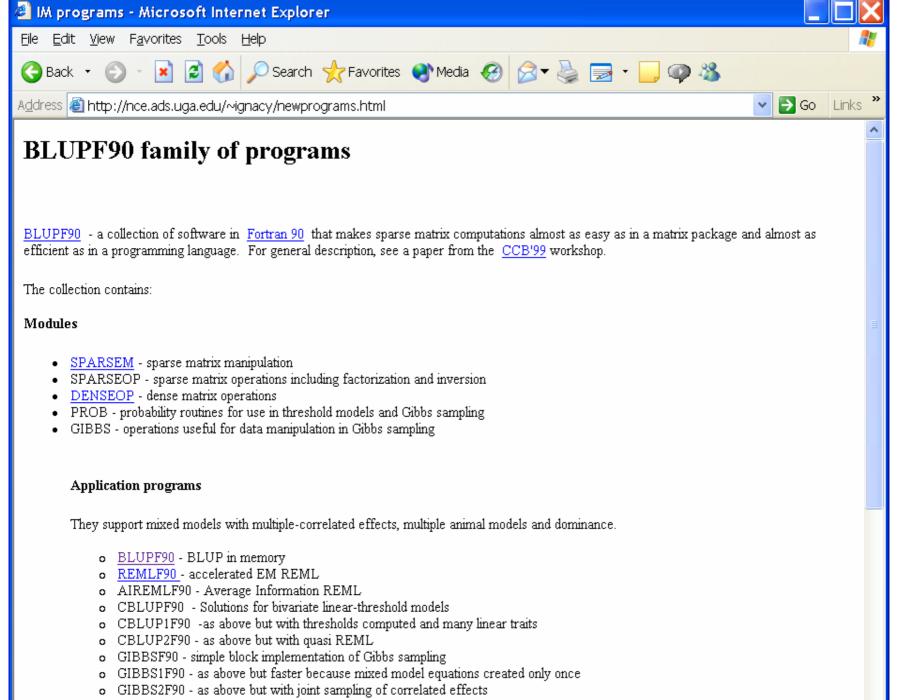
18 type,3 production, somatic cells, days open + productive life (PL)

PL: productive life ST: stature SR: strength BD: body depth TW: thurl width

Methodology

Optimized sampler 1-3 months run time

Validation with MT



POSTGIBBSF90 - graphical tool for post-Gibbs analysis

Choices in estimation of parameters

- Several versions of REML
- Several versions of MCMC
- Linear and nonlinear

• Modifications relatively simple

Which is the best model?

- Statistical tests
 - Show which models are better fitting
 - Do not show whether
 - differences important in practice
 - which important effects are missing
- Predictivity at WCGAL06
 - Blasco
 - "posterior predictive ability was the only criterion that ranked methods correctly" by .. & Sorensen

Performance of various testday models

(Lopez-Romero and Carabano, 2002)

Model	Relative BIC	Predictive ability
Repeatability	2210	0.835
Legendre (3)	0	0.855
Legendre (4)	-255	0.857
Legendre (5)	-294	0.858

All models almost identical for ranking sires

Conclusions

- Different methodologies for different problems
- Balance of complexity and amount of data
- Caution with statistical criteria
- Importance of "fixed effects"

"All models are wrong, some are useful"