

Uppsala, June 7, 2005

Session 5 Coping with New Regulation: Alternatives to Antimicrobial Growth Promoters

Alternatives to Antimicrobial Growth Promoters (AGP)

Caspar Wenk Federal Institute of Technology Zürich - Switzerland

KEY FOR HEALTH ANIMALS: EUBIOSIS

Eubiosis: Stable and healthy microflora in the digestive tract

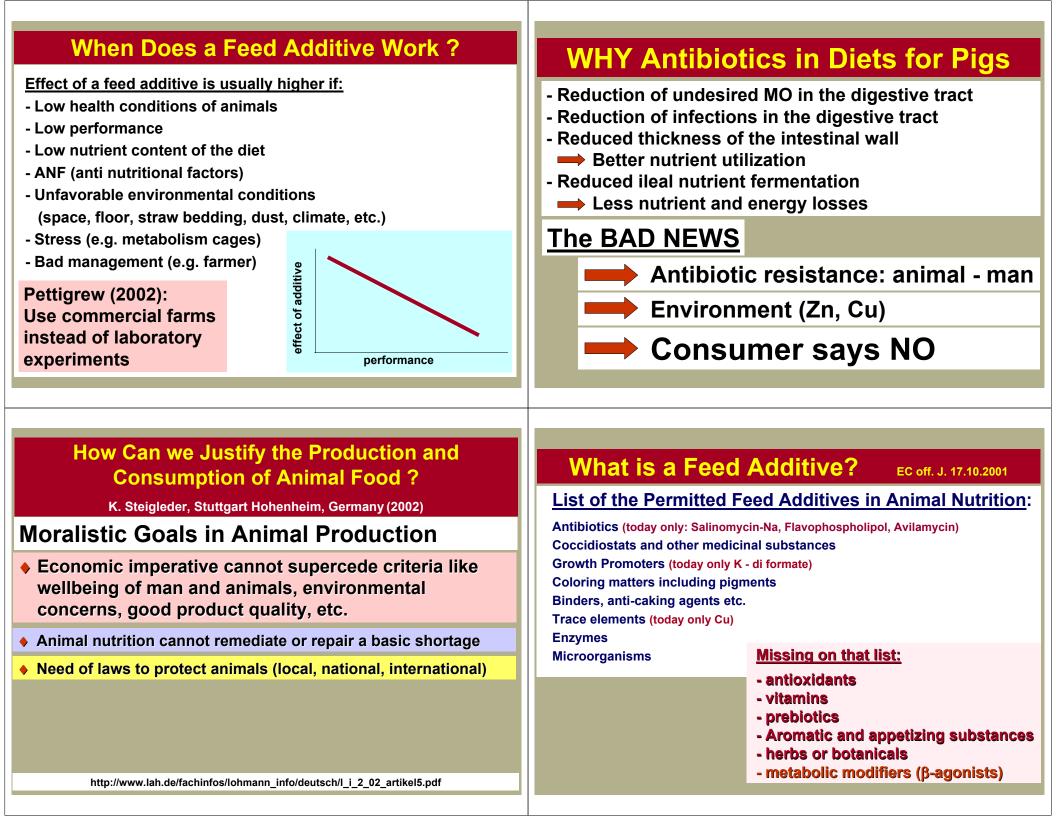
Contribution of the EUBIOSIS:

- Digestion of nutrients
- Vitamin synthesis
- Stimulation of the immune system (e.G. IgA)
- Protection of the mucosa against undesired MO
- Antagonistic effects against undesired MO
- others

WHY Antibiotics in Diets for Pigs

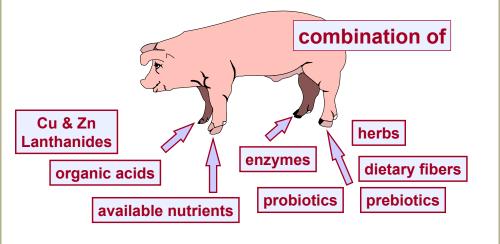
- Reduction of undesired MO in the digestive tract
- Reduction of infections in the digestive tract
- ➡ Less animal losses
- Reduced thickness of the intestinal wall
- Better nutrient utilization
- Reduced ileal nutrient fermentation
- Less nutrient and energy losses

The GOOD NEWS


- 🔶 Better health / less animal losses
 - Higher growth rate
 - Better feed conversion

Losses of Performance after Withdrawal of Antimicrobial Feed Additives

(under good hygienic conditions) Pfirter et al (1996)


	reduced body mass gain	worse feed conversion ratio
veal calve	7 - 8%	4 - 5%
beef	4%	2%
piglet	8%	5%
growing pig	5%	3%
fattening pig	2%	1%
pig production	5%	2%
broiler	3%	2%
laying hens (egg performar	nce) 1%	1%

Furthermore eventually less animal losses and costs for veterinarian

PRONUTRIENTS Instead of ANTIBIOTICS for Farm Animals

PRONUTRIENTS as ALTERNATIVES

Minerals as AGPs

ZnO – CuSO₄ – Rear Earth Elements

It is well-known that especially $ZnO - CuSO_4$ develop a pronounced antimicrobial activity in the digestive tract. Accordingly 250 - 300 ppm $CuSO_4$ (piglets and fattening pigs) or up to 8000 ppm ZnO (piglets) have been used.

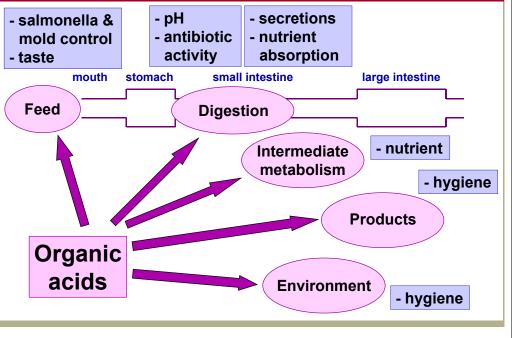
There are obvious toxicological as well as environmental arguments against the use of such high doses.

Recently Rear Earth Elements (Lanthanides) are evaluated as possible alternatives.

Minerals as AGPs

In EU & Switzerland the following maximal dosages are prescribed in mixed feed:

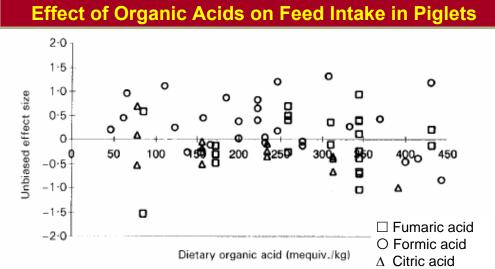
- Znall species farm animals
pet animals150 ppm
250 ppm
200 ppm)
- Cupigs until 12 weeks170 ppmafter 12 weeks25 ppmveal calves35 ppmsheep15 ppmother species25 ppm


(Denmark has again permitted the use of Zn as AGP for piglets)

Rare	Earth Elem	ents (REE) in	Growing Pig	s:
Eu	ropean Exp	eriments	Birgit Prause (2005)	
PIGS	Dose of REE	BWG (rel. to control)	FCI (rel. to control)	Author
72 piglets, 7 kg BW over 35 days	75 / 150 mg/kg -Chloride	+ 2 % / +0-5 %	-5 % / -3 ; -7 %	Rambeck et al. (1999)
48 piglets, 17 kg BW (8 + 6 weeks)	150 mg/kg -Chloride	+19 %* / +12 %*	-11 %* / -3 %	Borger (2003)
Field trial 18 kg – 100 kg BW	300 mg/kg -Chloride	+4 %	-9 %	Eisele (2003)
24 piglets, 9 kg BW over 41 days	100 / 200 mg/kg -Citrate	+ 9 % / +23 %	-6 % / -6 %	Knebel (2004)
48 pigs 25kg – 104 kg BW	250 mg/kg -Citrate	+ 9 %*	-4 %*	Kessler (2004)
147 piglets 8kg over 35 days	150 / 300 mg/kg -Citrate	-1 % / -4 %	-1 % / -4 %	Fritz / Gebert (2004)
40 piglets 8kg – 60 kg	150 / 300 mg/kg -Citrate	0% / (-1%)	-7 %* / -2 %	Prause (2005)
40 piglets 35 – 60 kg BW	100 mg/kg chloride/ -nitrate/ -citrate/ - ascorbate	-14 %	ND	Böhme et al (2002)
		* P ≤ 5 %	ND = Not Done	

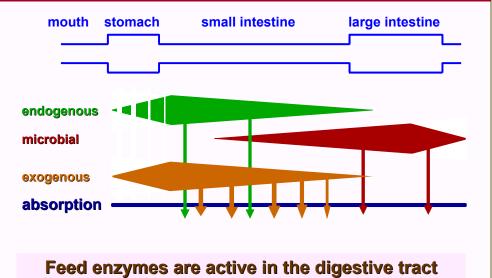
	<u> </u>					
Acid	Formula	MW	Dichte (g/ml)	Form	рКа	Sol. in water
Formic	НСООН	46.03	1.220	liquid	3.75	x
Acetic	СНЗСООН	60.05	1.049	liquid	4.76	x
Propionic	CH3CH2COOH	74.08	0.993	liquid	4.88	x
Butyric	CH3CH2CH2COOH	88.12	0.958	liquid	4.82	x
Lactic	CH3CH(OH)COOH	90.08	1.206	liquid	3.83	v
Sorbic	CH3CH:CHCH:CHCOOH	112.14	1.204	solid	4.76	s
Fumaric	COOHCH:CHCOOH	116.07	1.635	solid	3.02 4.38	S
Citric	COOHCH2C(OH)(COOH)CH2COOH	192.14	1.665	solid	3.13 4.76 6.40	V
	∞ , soluble in all proportions, ν , very so	bluble, <i>s</i> ,	sparingly s	soluble		
			Partane	n und N	roz, 1۹	999

Formula, Physical and Chemical Properties of **Organic Acids**

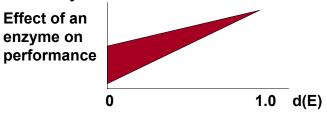

Organic Acids: Modes of Action

		Laura	Gastrointestinal pH				Gastric
Acidifier	Reference	Level (g/kg)	Gastric	lleal	Caecal	Colonic	dry matter content
itric acid	Scipioni et al. 1978	10	ns	ns			
	Risley et al. 1991	15	ns	ns	ns	ns	
	Risley et al. 1992	15	ns	ns	ns	ns	
	Rislev et al. 1993	15	ns	ns	ns	ns	
	Fasshauer & Kienzle, 1995	10		_			
	Badcliffe et al. 1998	15	_				
		30	_				
Formic acid	Bolduan et al. 1988a	3.5	_	ns			ns
		12	_	ns			ns
	Eidelsburger et al. 1992a	12.5	_	ns	ns	ns	ns
	Roth et al. 1992a	6	ns	ns	ns	ns	ns
		12	ns	ns	ns	ns	ns
		18	ns	+	+	+	ns
		24	ns	+	ns	+	ns
	Gabert & Sauer, 1995	10		ns			
Fumaric acid	Bolduan et al. 1988b	5	ns				ns
		15	_				ns
	Risley et al. 1991	15	ns	ns	ns	ns	
	Rislev et al. 1992	15	ns	ns	ns	ns	
	Risley et al. 1992	18	_	ns	ns	ns	ns
	Risley et al. 1993	15	ns	ns	ns	ns	
	Gabert & Sauer, 1995	15		ns			
		30		ns			
Propionic acid	Bolduan et al. 1988a	3	ns	ns			ns
		10	ns	ns			ns
Calcium formate	Eidelsburger et al. 1992a	10	ns	ns	ns	ns	ns
	0	18	ns	ns	ns	ns	ns
Sodium formate	Roth et al. 1992b	18	ns	ns	ns	ns	_
Sodium fumarate	Gabert & Sauer, 1995	15		ns			ns

Eff


(P<0.05); ns, no significant influence on pH or dry matter content

Formic acid slightly better than others


Partanen und Mroz. 1999

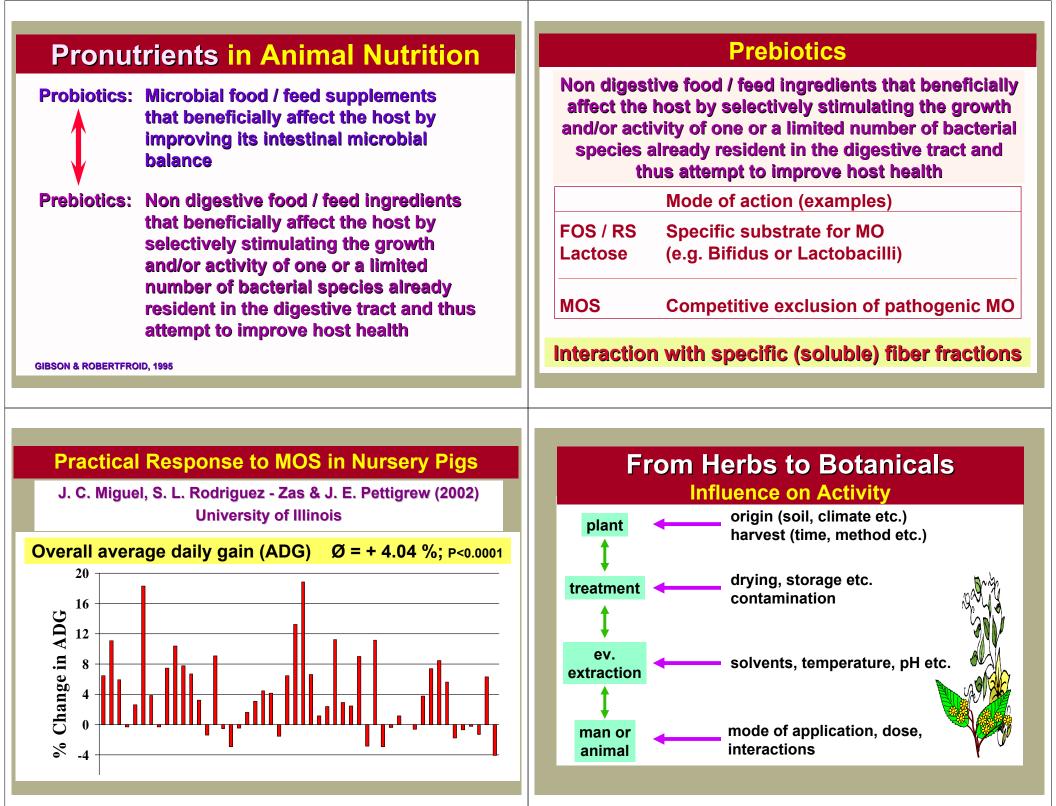
Competition between Enzymes in the Digestive Tract

ENZYMES: What can we expect from them?

- 1 Replenishment of lacking endogenous enzymes
- 2 Better availability of feed nutrients

3 Inactivation of ANF: Phytate, inhibitors, mycotoxins, etc.

Enzymes, Antibiotics and Microbials as Feed Additives for Broilers (Gordon Rosen, 2003)


Parameter	A	E	М
n	5159	2557	234
FDIC (g)	2478	2106	2636
FDIeff	15 (970)	32.4 (451)	6 (1449)
LWGC (g)	1075	1043	1331
LWGeff (g)	39.8 (129)	54.3 (147)	25.3 (192)
FCRC	2.16	1.99	1.87
FCReff	073 (164)	105 (185)	030 (195)
DUR (days)	41.0	30.3	35.8
YEAR - 1900	71.6	87.0	86.6
Improvement frequency (%)**	74	75	70

$^{\star\star})\,$ percentage of tests with feed conversion ratio and live weight gain improvement

Enzymes, Antibiotics and Microbials as
Feed Additives for PigsParameterAEMn2702509238FDIC (kg/day)1.6141.481.993FDleff (kg/day).067 (185).029 (319).015 (483)LWGC (kg/day).541.584.431

n	2702	509	238
FDIC (kg/day)	1.614	1.481	.993
FDleff (kg/day)	.067 (185)	.029 (319)	.015 (483)
LWGC (kg/day)	.541	.584	.431
LWGeff (kg/day)	. 049 (104)	. 042 (104)	. 021 (142)
FCRC	2.90	2.39	2.12
FCReff	136 (156)	124 (121)	082 (206)
DUR (days)	65.8	53.1	43.7
YEAR - 1900	69.3	93.3	85.1
Improvement frequency (%**)	69	76	56

**) percentage of tests with feed conversion ratio and liveweight gain improvement

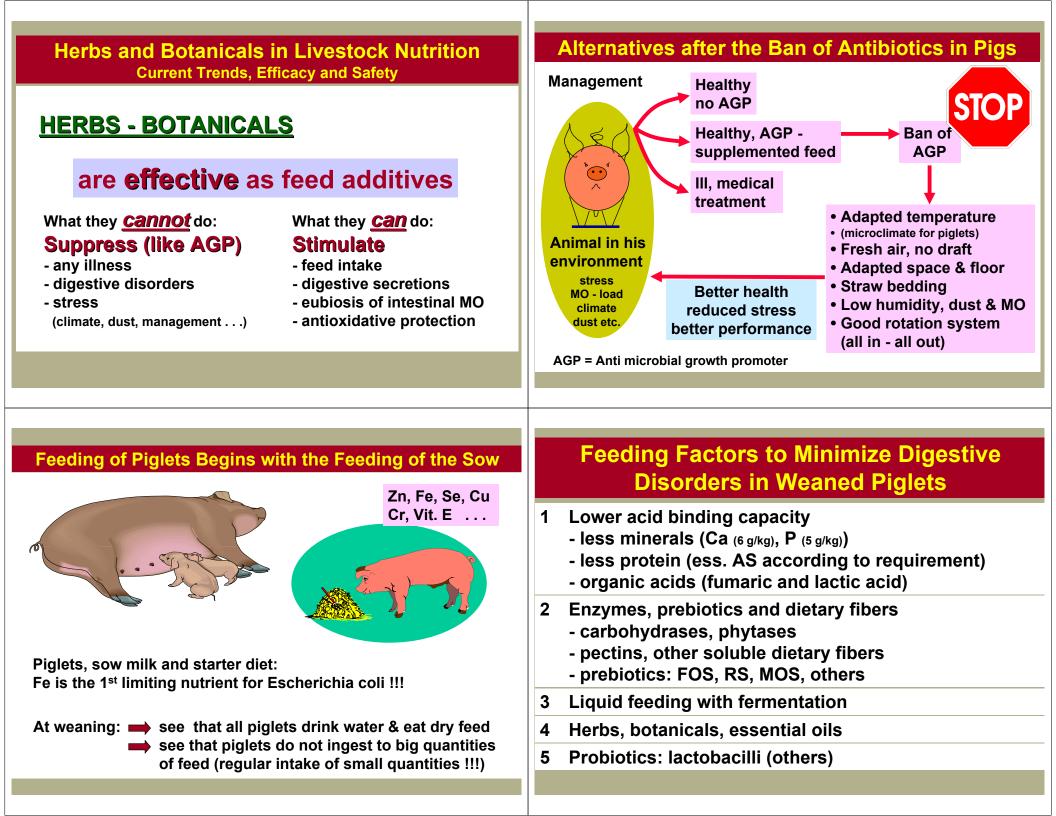
Antimicrobial Activity of Herb Extracts (Botanicals) Stéphanie Good (2003)

Water and ethanol extracts from: Oregano, Clove, Fenugreek, Black cumin and Curcuma

	Stéphanie Good (2003)				
	Ent. faecalis	E. coli	Candida magnoliae		
Water extract					
Oregano	-	(*)	-		
Clove	-	(*)	-		
Fenugreek	-	-	-		
Black cumin	-	-	-		
Curcuma	-	-	-		
Ethanol extract					
Oregano	**	**	*		
Clove	**	**	*		
Fenugreek	-	(*)	-		
Black cumin	(*)	(*)	-		
Curcuma	*	*	-		

Antimicrobial Activity of Herb Extracts (Botanicals)

Literature Results with Herbs and Essential Oils in Piglets


Rodehutscord, M., Kluth	Rodehutscord, M., Kluth, H. (2002) Tierfütterung ohne antibiotisch wirkende Leistungsförderer. Züchtungskunde, 74, (6) S. 455-4527							
Supplement	Dose	Feed in	take	BM gai	n	Feed eff	ficiency	Autors
	g/kg	C ¹	Rel. ²	С	Rel.	С	Rel	
	Feed	g/d	%	g/d	%	kg/kg	%	
<u>Herb</u>								
Oregano	2	553	-1	367	+9	1,51	-10	Schuhmacher et al. (2002)
Oregano	2	601	+4	480	+5	1,25	±0	
Garlic	1	553	-7	367	+2	1,51	-8	
Garlic	1	601	+5	480	+1	1,25	+4	
Rose of sharon	2	553	-7	367	-3	1,51	-6	
Rose of sharon	2	601	+3	480	+2	1,25	+1	
Coriander	2	558	+4	409	+7	1,37	-3	
Sage	2	558	+3	409	+7	1,37	-4	
Thyme	2	558	+4	409	+6	1,37	-3	
Yarrow	2	558	+1	409	+4	1.32	-4	
Echinacea purpurea	18	622	-2	389	+1	1,60	-4	Maass et al. (2002)
Herb mixture								
ENTEROGUARD	1	573	-2	330	-3	74	±0	Richter et al. (2002)

Literature Results with Herbs and Essential Oils in Piglets

Rodehutscord, M., Kluth, H. (2002) Tierfütterung ohne antibiotisch wirkende	Leistungsförderer, Züchtungskunde, 74, (6) S. 455-4527
(2002) fioriationalig office and protocol finite	

Supplement	Dose	Feed ir	Feed intake		BW gain		ficiency	Autors
	g/kg	C ¹	Rel. ²	С	Rel.	С	Rel	
	Feed	g/d	%	g/d	%	kg/kg	%	
"Essential" oil								
Oregano	0,1	596	+3	398	+2	1,50	±0	Gollnisch et al. (2001)
Oregano	0,1	724	±0	444	+5	1,63	-5	Wald et al. (2001)
Cassia	0,1	596	+5	398	+2	1,50	+3	Gollnisch et al. (2001)
Cassia	0,1	724	-5	444	±0	1,63	-5	Wald et al. (2001)
Clove leaf	0,1	596	+1	398	-1	1,50	+3	Gollnisch et al. (2001)
Clove leaf	0,1	724	+3	444	+7	1,63	-4	Wald et al. (2001)
Lemon grass	0,1	887	-2	531	+2	1,67	-4	
Piment	0,1	887	-8	531	-4	1,67	-5	
Teebaum	0,1	887	-2	531	±0	1,67	-2	
Mints	0,1	887	-9	531	-3	1,67	-7	
Mints	0,1	717	-6	457	-5	1,57	-1	Wald (2002)

¹ Control ² relative to control

