

Nutrition and animal management as part of a global strategy for reducing the environmental impact of pig production

Michel BONNEAU
Jean Yves DOURMAD
Catherine JONDREVILLE
Paul ROBIN
Hayo VAN DER WERF
Philippe LETERME

Environmental impact of pig production

The Global Planet NEDERLAND DANMARK **DORRA** Perpignan PYRÉNÉES-LÉRIDA Segre **GERONA** Lérida Lleida TARRAGONA Barcelona Tarragona

Nutrition and animal management as part of a global strategy for reducing the environmental impact of pig production

- Reducing the output of nitrogen and phosphorus from the animals
- Management of nitrogen output via housing conditions and the use of litter
- Reducing the output of trace elements from the animals
- Optimizing manure management at farm level
- Optimizing manure management at regional level
- Scenarios for environment-friendly pork production

Nutrition and animal management as part of a global strategy for reducing the environmental impact of pig production

- Reducing the output of nitrogen and phosphorus from the animals
- Management of nitrogen output via housing conditions and the use of litter
- Reducing the output of trace elements from the animals
- Optimizing manure management at farm level
- Optimizing manure management at regional level
- Scenarios for environment-friendly pork production

Reducing the output of nitrogen and phosphorus from the animals

P retention is low

Poulsen et al. (1999)

N retention is low

Utilise feed in a more efficient way for the deposition of carcass tissue

Utilise feed in a more efficient way for the deposition of carcass tissue

- Select leaner, faster growing pig
- Improve the availability of nutrients in the feed
- Better fit nutrient allowances to animal requirements

Effect of carcass lean content and FCR on N excretion in growing pigs (30-112 kg)

CORPEN, 2003

Effect of performance* on N output per slaughter pig (farrow to finish unit)

^{*} farms are grouped according to gross margin / sow / year

Improving efficiency of N utilization: a better fitting of protein supply to the requirements

✓ Improvement of amino acid balance

- Adequate choice of feed ingredients
- Use of industrial amino acids
- ⇒ Requires a precise knowledge of ideal amino acid profile in the protein requirement

✓ Improvement of the feeding strategy

- Change the composition of the diet according to growing stage or physiological status
- ⇒ Requires a precise knowledge of changes in amino acid requirements over time

Effect of phase feeding and protein quality on N excretion by fattening pigs

Effect of CP on slurry characteristics and ammonia volatilisation in fattening pigs

	Dietary crude protein content			
	20%	16%	12%	
N balance (g.pig ⁻¹ .d ⁻¹)				
N Retention	23.2	23.5	21.9	
N Excretion	40.7	27.6	15.0	
Ammonia volatilis.	17.4	13.8	6.4	
N in Soil	23.3	13.8	8.6	

P retention is low

The digestibility of P is low

Digestibility of P in plants is generally low

Improving P digestibility

- Use of highly digestible phosphates
- Improve phytic P digestibility
 - Pigs expressing salivary phytase :
 Phytic P almost totally digested
 - Low phytate cultivars (maize, barley)
 - Microbial phytase

Improving P digestibility:

Maize	Normal	« low phyt. »		
Total P (g / kg)	2.5	2.8		
Phytic P (% total P) 80	36		

Low phytate cultivars

Improving P digestibility: microbial phytase

Improving P digestibility:

Microbial phytase

500 U ≈ 0.65 to 0.75 g dP

Effect of three strategies for phosphorus feeding on growth performance and P excretion in growing-finishing pigs

	Basal	Min.P	Phytase
P content, g/kg	3.9	5.2	3.7
Phytase activity (FTU/kg)	210	205	735
Average daily gain, g	764 ^a	805 ^b	795 ^b
Feed conversion ratio	2.73	2.65	2.66
Bone breaking strength, N/m ¹	11.9 ^a	13.7 ^b	14.3 ^b
Volume of slurry, I/pig	358	337	331
P in slurry, kg/pig	0.36	0.50	0.26

Nutrition and animal management as part of a global strategy for reducing the environmental impact of pig production

- Reducing the output of nitrogen and phosphorus from the animals
- Management of nitrogen output via housing conditions and the use of litter
- Reducing the output of trace elements from the animals
- Optimizing manure management at farm level
- Optimizing manure management at regional level
- Scenarios for environment-friendly pork production

Nitrogen: Litter vs Slatted floor

Kermarec and Robin, 2002

Experimental facilities

Nitrogen: Litter vs Slatted floor

Litter

N-N₂O N-NH₃ 1-8% 10-16%

Commercial farms

Hassouna et al., 2005

Nutrition and animal management as part of a global strategy for reducing the environmental impact of pig production

- Reducing the output of nitrogen and phosphorus from the animals
- Management of nitrogen output via housing conditions and the use of litter
- Reducing the output of trace elements from the animals
- Optimizing manure management at farm level
- Optimizing manure management at regional level
- Scenarios for environment-friendly pork production

Trace elements:

Copper and Zinc

☑Cu and Zn oversupplied in pig feeding

- To avoid digestive pathology
- Environmental pollution (accumulation in soils)

Animal requirements and maximal incorporation rate of Cu and Zn in diets for piglets and growing-finishing pigs

	Recommendations			
	NRC (1998)	INRA (1989)	BSAS ^a (2003)	EU regulation (2004)
Copper (ppm)				
piglets(8-28 kg)	6.0-5.0	10	6	<170
growing pigs(28-60 kg)	4.0	10	6	<25
finishing pigs(60-110 kg)	3.5	10	6	<25
Zinc (ppm)				
piglets(8-28 kg)	100-80	100	100	<150
growing pigs(28-60 kg)	60	100	100	<150
finishing pigs(60-110 kg)	50	100	100	<150

ato be added to the diet

Reducing the output of trace elements

- Better knowledge of requirements
 - ✓ Deposition ? Low
 - ✓ Overall health status / immunity ?
 - ✓ Prevention of digestive disorders?
 High
- Improvement of availability to pigs

Excretion in slurry g / pig

Daily gain

Paboeuf et al., 2005

Feed conversion ratio

32 / 69

Improving Zn availability

Phytates

Phytase in piglet diet

— Without phytase — With phytase (700 U /kg)

Jondreville et al., 2005

Zn equivalency for phytase

(weaned piglets fed maize-soybean meal based diets)

500 U ≈ 30 mg Zn as sulphate

Different scenarios of Zn supply

	Dietary content (ppm)			
	EU+	EU	NRC	NRC Phytase
Piglet 1 (8-13 kg)	2000	150	100	70
Piglet 2 (13-30 kg)	150	150	80	50
Growing (30-60 kg)	150	150	60	30
Finishing (60-110 kg)	150	150	50	30

Different scenarios of Zn supply

Jondreville et al., 2005

Different scenarios of Zn supply

38 / 69

Different scenarios of Cu supply

Dietary content (ppm)

	EU+ Former	EU New	EU→ Req.	Requi rement
Piglet 1 (8-13 kg)	175	170	170	6
Piglet 2 (13-30 kg)	175	170	170	6
Growing (30-60 kg)	100	25	6	6
Finishing (60-110 kg)	100	25	6	6

Different scenarios of Cu supply

Different scenarios of Cu supply

41 / 69

Nutrition and animal management as part of a global strategy for reducing the environmental impact of pig production

- Reducing the output of nitrogen and phosphorus from the animals
- Management of nitrogen output via housing conditions and the use of litter
- Reducing the output of trace elements from the animals
- Optimizing manure management at farm level
- Optimizing manure management at regional level
- Scenarios for environment-friendly pork production

Optimisation at farm level

- Build a model of a farm associating crop and pig productions
- Use this model for the optimisation of different production systems in different contexts of manure utilization
- Maximisation of the gross margin under environmental constraints (N & P)

Modelling N fluxes in a farm

Effect of manure management and intensity of pig production on gross margin

Effect of manure management and intensity of pig production on gross margin

→ slurry

-•- manure

slurry+manure

Effect of manure management and intensity of pig production on gross margin

Effect of manure management and intensity of pig production on gross margin

Evolution of crop rotation with intensity of pig production (20-160 fattening pigs / ha / year) liquid slurry + compostation with straw

Evolution of crop rotation with intensity of pig production (20-160 fattening pigs / ha / year) liquid slurry + compostation with straw

Evolution of crop rotation with intensity of pig production (20-160 fattening pigs / ha / year)

slurry + manure + compostation

Dourmad et al., 2005

Optimisation of gross margin per activity

- Pig production (€/pig)
 Optimum: 50-60 pigs/ha/year.
 above => increased cost of manure management
- Crop production (€/ha)
 Optimum: 60-70 pigs/ha/year
 below => increased cost of fertilisation
 above => constraints on crop rotation

Optimizing manure management at farm level

- Strong links between animal and crop productions=> interest for a simultaneous optimization
- Crop rotation depends on both the strategy of slurry management and N loading per ha
- Systems with intermediate intensity of pig production are more sustainable (high autonomy for feeding & fertilization)
- Association on the same farm of liquid and solid manure appears an interesting solution.
- Optimal economical efficiency for about 60-70 fattening pigs produced / ha / year

Nutrition and animal management as part of a global strategy for reducing the environmental impact of pig production

- Reducing the output of nitrogen and phosphorus from the animals
- Management of nitrogen output via housing conditions and the use of litter
- Reducing the output of trace elements from the animals
- Optimizing manure management at farm level
- Optimizing manure management at regional level
- Scenarios for environment-friendly pork production

Optimizing manure management at regional level

Réunion Island

Goal: to elaborate regional strategies of manure management in 2 different contexts of Reunion island

- «Grand-Îlet » :
 - no spreading areas for slurry produced by pig and poultry farms
 slurry processing
- « Plaine des Grègues » :
 - Pig and cattle farmsorganic matter (OM) producers;
 - Vegetables or sugar-cane farms
 - = OM consumers
 - → Need to organize OM exchanges

3069 m

Modeling according to 3 steps

- 1. What kind of treatment ? (Macsizut)
- 2. Where to locate the treatment unit and how to feed it ? (*Approzut*)
- 3. Optimise the use of organic matter (slurry or treatment outputs) (*Biomas*)

Médoc et al., 2005

- Farm policy:

 driven by farm stocks
- CTP policy:
 driven by treatment plant stock
- Plan

Step 3: Biomass

A multi-actors model to simulate organic matter exchanges at the regional scale

- To optimize the utilization of solid phase coming from the treatment plant
- To organize exchanges of raw organic matter between producers (PMO) and consumers (CMO), taking into account the carriers (TMO)

Nutrition and animal management as part of a global strategy for reducing the environmental impact of pig production

- Reducing the output of nitrogen and phosphorus from the animals
- Management of nitrogen output via housing conditions and the use of litter
- Reducing the output of trace elements from the animals
- Optimizing manure management at farm level
- Optimizing manure management at regional level
- Scenarios for environment-friendly pork production

The Life Cycle Analysis approach

- Classic approach: one location, one pollutant
 - e.g. pig farm, nitrates
- May lead to problem shifting
 - e.g. solve one problem (nitrate), but create/enhance two new problems (P, N₂O)
 - emissions on farm versus emissions off farm
- → Multi-impact systems approach, such as LCA

The Life Cycle Analysis approach

- LCA applied to agriculture:
 - takes into account a large number of pollutant emissions and non-renewable resources,
 - both on the farm (direct effects) and associated with its inputs (indirect effects):
 - fertiliser, machines, diesel oil,
 - may include transformation and use (consumption) of farm products

Three scenarios

- 1. Good Agricultural Practice (GAP)
- 2. Organic pig (Org)
- 3. Quality pig Label Rouge (Qua)

The GAP, Qua and Org pig production systems

	GAP	Qua	Org		
Piglet production					
Housing	Slatted floor	Outdoor	Outdoor		
Weaned piglets	25.5	22.6	20.3		
Weaning age, d	25.7	28	42		
Surface per sow, m ²	<4	1000	1000		
Feed per sow, kg/y	1313	1490	1695		
Weaning to slaughtering					
Housing	Slatted floor	Straw litter	Straw litter		
Surface per pig, m ²	0.85	2.6	2.3		
Feed : gain ratio	2.7	2.9	3.2		
Slaughter age, d	175	190	195		
Slaughter weight, kg	113	115	120		

LCA results

- Most unfavourable conditions
- Reference conditions
- Most favourable conditions

LCA results

- The scenarios differ
- The results depend on the unit
- There is more variation within scenarios than between scenarios

67 / 69

Contribution of life cycle stages to eutrophication, per ha

Identify where progress can be made

Thank you for your attention