N4.2

Effect of rumen escape starch in maize silage based diets for dairy cattle ¹

D. De Brabander, S. De Campeneere, J. Vanacker, N. Geerts

Department Animal Nutrition and Husbandry
Agricultural Research Centre
Ministry of the Flemish Community, Belgium

¹ Research financially supported by the Ministry of the Flemish Community

ILVO

Abstract

The effect of rumen escape starch (RES) level in maize silage (MS) based diets on milk yield and composition was investigated in two trials (T1, T2) carried out in early lactation. MS was given as the sole roughage in T1 or with prewilted grass silage in T2. In T1 three RES-levels, 40, 52 and 59 g.kg DM-1, originating from two MS-cultivars and two concentrates (C), were compared in a latin square design with 18 Holstein cows: MSICI, MShCl, MShCh, MShCh, Holstein cows: MSICI, MShCl, MShCl, MShCl, 15 and 24.4 %). The two concentrates only differed in starch degradability. In T2 two RES-levels, 28 and 35 g.kg DM-1, originating from the previous two MS-cultivars, were compared in a cross-over design with 16 Holstein cows: MSICI, MShCl.

Dry matter intake amounted to 19.1, 20.0 and 20.1 kg for MSICI, MShCI and MShCh, in T1, and to 20.7 and 21.3 kg for MSICI and MShCl, in T2. Milk yield tended (P>0.05) to increase with increasing RES-level and amounted to 26.1, 26.3 and 26.6 kg in T1 and to 28.8 and 29.7 kg in T2. Milk composition was almost unaffected. It is not clear whether the higher milk yield may be directly attributed to the RES-content and/or indirectly to the higher DM-intake

ILVO

Introduction

Is rumen escape starch important in dairy cattle nutrition?

Is rumen escape starch in maize silage important?

Beneficial effect on cow performance, net energy value ?

"Starch content" was previously studied (De Brabander et al., 2004)

ILVO

Theoretical considerations of a lower starch degradability

PRO

- Rumen escape starch (RES) is digested in the small intestine
 - → higher energetic efficiency
- Repartition carbohydrate digestion over rumen and small intestine
 - → improved cow performance
- RES does not disturb rumen fermentation
 - → improved feed efficiency

ILVO

Theoretical considerations of a lower starch degradability (continued)

CONTRA

- High RES-levels can depress starch digestibility
 - → depressed energetic efficiency
- RES does not provide fermentable organic matter
 - $\rightarrow \text{lower microbial protein synthesis}$

ilvo

Effect of amount of rumen escape starch (RES) on starch digestibility in the small intestine

Effect of rumen escape fraction on starch digestibility in the small intestine Y*-.728 X +87.9 10 20 30 40 50 60 RES-fraction Nocek and Tamminga, 1991

Feeding trials

Objective: effect of RES-level (equal S-content) on performance

in: early lactation

with: maize silage (MS) / MS + prew. grass sil. (PGS)

2 maize silage RES-levels (varieties)

2 concentrate RES-levels

II VO

Two trials

1) MS C

MS C

MS C

+ pressed beet pulp (2.8 kg DM) for sufficient FOM-supply Latin square design, 18 cows, 15 weeks

2) MS C

MS C + PGS

Cross-over design, 16 cows, 12 weeks

I,h = lower, higher RES-content, equal S-content

ILVO

Chemical composition of the maize silages

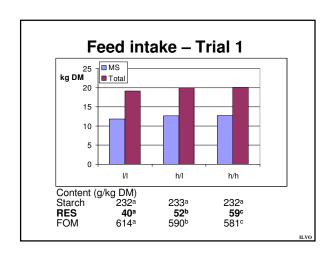
Low	High
328	328
315	318
58	78
208	206
382	390
18.5	24.4
	328 315 58 208 382

ILVO

Digestibility and nutritive value of the maize silages

RES-content	Low	High
Digestibility * (%)		
Org. matter	76.2 56.4	74.2
NDF	97.4	53.6
Starch		95.8
Nutritive value (kg ⁻¹ DM)	6.64 49	
NEL (MJ)	-39	6.56
DVE (g)	577	48
OEB (g)		-39
FOM (g)		542

* Digestibility determined with lactating cows

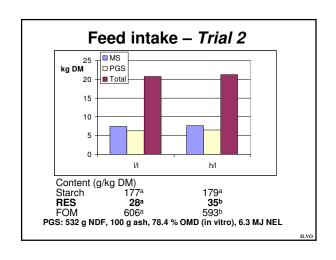

NDF-degradation (in situ) maize silage

**Property of the property of the prop

Starch in concentrate

RES-content	Low	High
Starch (g/kg DM)	202	190
Rumen esc. fraction (%)	11.5	31.0
RES (g/kg DM)	23	59

ILVO



Nutrient supply and production results TRIAL 1

RES-content MS/C	1/1	h/l	h/h
Nutrient intake			
NEL (MJ)	129a	135a	135a
DVE (g)	1517a	1588a	1609a
NEL (% requir.)	107a	111a	112a
DVE (% requir.)	103a	107a	110a
Production			
Milk (kg)	26.1a	26.3a	26.6a
Fat (%)	4.14 ^a	4.16 ^a	4.09a
Protein (%)	3.31a	3.26a	3.24a
LW-gain (kg)	0.29a	0.69 ^b	0.65ab

a,b: signif. different at P = 0.05

LVO

Nutrient supply and production results

I RIAL 2		
1/1	h/I	
133a	135a	
1690a	1722a	
105a	106a	
102a	103a	
28.8a	29.7a	
4.42a	4.29a	
3.37a	3.30a	
0.39a	0.79 ^b	
	1/1 133a 1690a 105a 102a 28.8a 4.42a 3.37a	

a,b: signif. different at P = 0.05

ILVO

Trial	kg milk	NEL-intake (MJ)	NEL-eq. * output (MJ)
Starch co	ontent (previ Difference	ous exp.) vs. diet lowest S-co	ontent
1	- 0.9 - 0.4	- 5.2 - 1.7	- 5.9 - 3.4
2	- 0.9 - 0.7	- 3.4 0	- 4.9 - 0.5
3	- 1.0	- 5.5	- 6.2
Rumen e		າ content (pres. exp vs. diet lowest RES	
1	+ 0.2 + 0.5	+ 5.2 + 6.1	+ 8.6 + 8.1
2	+ 0.9	+ 1.6	+ 9.8

RES in concentrates - 15 trials

Starch sources	Wheat Barley	Maize Sorgho
kg milk	27.4	28.0
% fat	3.69	3.71
% protein	3.26	3.24

Matthé et al., 2000

ILVO

Conclusions

- A higher rumen escape starch content tended to increase DM-intake and milk yield. As milk fat and protein content tended to decrease, milk fat and protein production was unaffected.
- If LW-change is taken into account, the results indicate a somewhat higher energetic efficiency of RES.

II VO

References

- De Brabander D.L., Geerts N., De Campeneere S. and J.M. Vanacker, 2004. Effect of starch content of maize silage based diets for dairy cattle. Book of abstract 55th Ann. Meeting EAAP, Bled, 3-10 Sept., p. 97.
- Matthé A., Lebzien P. und G. Flachowski, 2000. Zur Bedeutung von Bypass-Stärke für die Glucoseverzorgung von hochleistenden Milchkühen. Ubers. Tierernährg. 28, 1-64.
- Nocek J.E. and S. Tamminga, 1991. Site of digestion of starch in the gastrointestinal tract of dairy cows and its effect on milk yield and composition. J. Dairy Sci., 74, 3598-3629.

ILVO