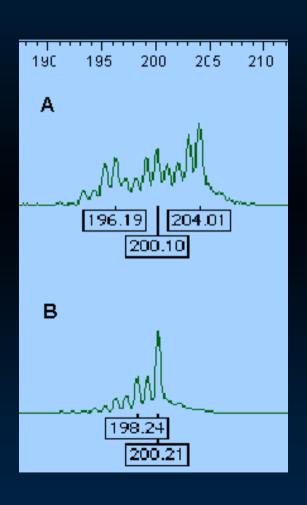
Abnormal gene expression caused by retroviral insertion results in the immotile short tail sperm defect in the Finnish Large White

Anu Sironen¹, Bo Thomsen², Magnus Andersson³, Virpi Ahola¹ and Johanna Vilkki¹ ¹MTT, ²DIAS and ³University of Helsinki

Immotile short tail sperm (ISTS)


- First case in the Finnish Yorkshire in 1987
- Became common at the end of 1990
- Presently 85 boars identified with ISTS
- Autosomal recessive inheritance
- Similar symptoms have been described in other species (Kartagener syndrome)

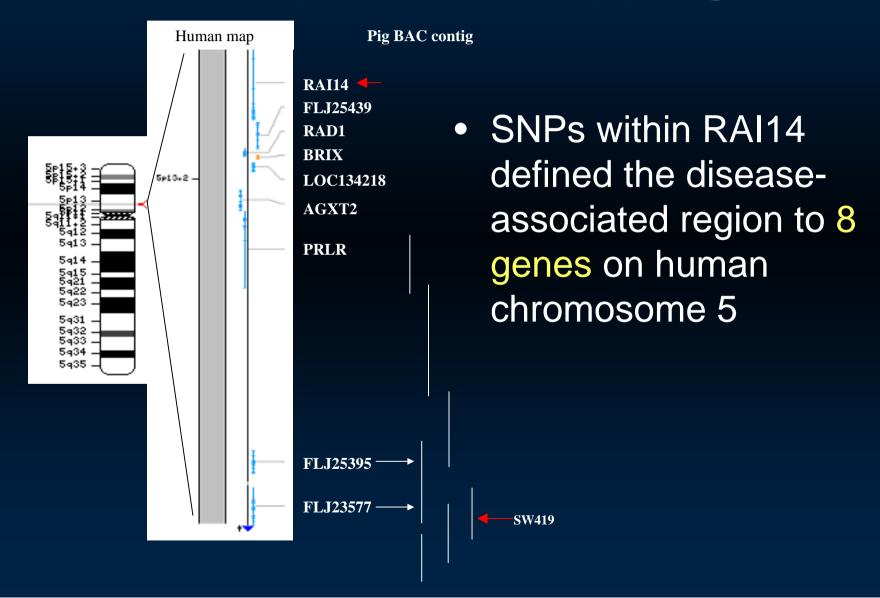
The ISTS phenotype

- Immotile sperm
- Shortened sperm tail
- Oligospermia
- The 9+2 axonemal structure is severely altered
- No effect on respiratory function or female reproduction → seems to only affect sperm flagella

Genome mapping

- Homozygosity mapping and DNA pooling used for genome scan
- 228 autosomal microsatellite markers (The U.S. pig genome project)
- One marker revealed a significant difference in allele distribution between affected and control boars

Haplotypes


 Affected chromosome haplotypes indicate that mutation maps between markers SW2411 and SW419 → markers for MAS

SW1035	SW2411	ISTS	SW419	Total
2	3	-	4	1
2	3	-	1	57
1	3	-	1	1
2	1	-	1	1
3	4	-	1	2
1	4	-	1	8

Fine-mapping

- BAC-clones were picked up with two diseaseassociated markers
- Chromosome walking with end sequences
- Comparative mapping (DIAS) defined the disease associated region to 2 Mbp on human chromosome 5
- Sequence analysis of porcine orthologs revealed several SNPs

Comparative mapping

Candidate gene

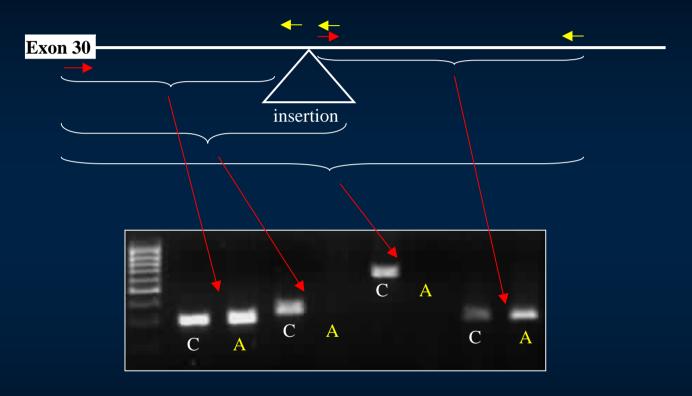
Expressed in the rat testis and during cilia development (tissue specific)

-In seminiferous tubules stage-specific expression

-In tracheal epithelial cells the expression closely paralleled with axonemal dynein

 Similarity to CPC1 in the Chlamydomonas (unicellular green alga)

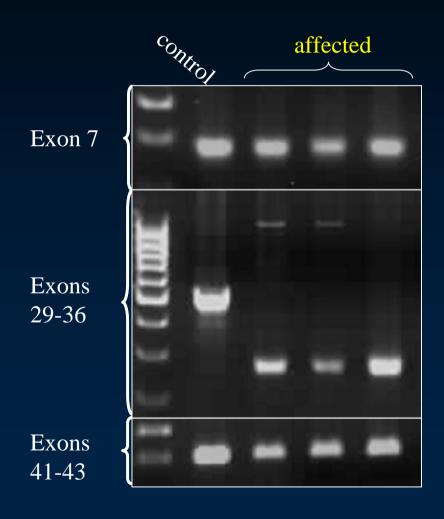
CPC1 is essential for the assembly of the central pair structure

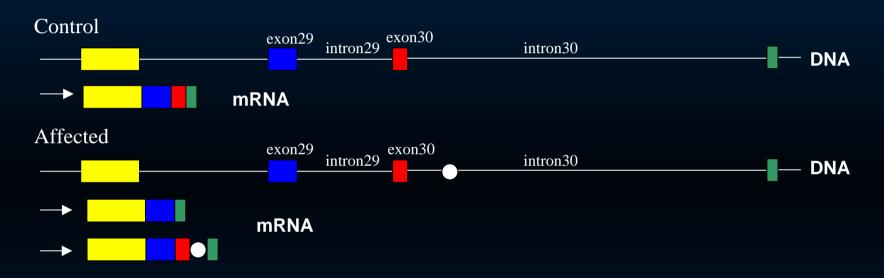

Candidate gene

Genomic sequence of the human gene 150 000 bp

mRNA 5580 bp 43 exons

- mRNA from the pig testis isolated and sequenced
- Exon 30 missing in affected boars


Genomic mutation


C=control A=affected

•Sequencing of the fragment revealed an inserted porcine endogenous retrovirus

RT-PCR for gene expression in the testis

Insertion affects splicing

- •In most affected transcripts exon 30 is skipped
- •In a few cases, exon 30 is present together with part of the insertion sequence
- Translation stop codons are created in both cases

Conclusions

- ISTS locus mapped to porcine chromosome 16 and the causal gene for the defect identified
- At the RNA level, ISTS appears to be due to premature translation stop codons in the testis specific transcripts created by abnormal splicing
- A retroviral insertion within intron 30 seems to be the cause for the altered splicing pattern

Thank you for your attention!

