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Summary 
We analysed data from a selective DNA pooling experiment consisting of 130 unrelated individuals of blue fox (Alopex 
lagopus), which originated from two different types regarding body size. Association between allele frequency and 
body size was tested using uni- and multivariate logistic regression approach applying Odds Ratio and test statistics 
from power divergence family. Unfortunately, due to a small sample size and resulting sparseness of the data table, in 
hypotheses testing we could not rely on the asymptotic distributions of the tests. Instead, we tried to account for data 
sparseness by (i) modifying confidence intervals of Odds Ratio, (ii) by using a normal approximation of the asymptotic 
distribution of the power divergence tests with different approaches for calculating moments of the statistics and (iii) by 
assessing P-values empirically, based on bootstrap samples. As a result, significant association was observed for 
markers C03.629 and C05.771 representing dog chromosomes 3 and 5 respectively (map location in the blue fox 
genome is unknown). Furthermore, using simulations we show that among statistics from the power divergence family 
– Pearson’s goodness-of-fit test has the best asymptotic properties for sparse data, while its normalised transformations 
are extremely conservative. 

Introduction 
Although fur animals are not the most important species bred on farms, in some countries 
(Denmark, Finland, Norway, Poland, Russia) fur production is of economic importance. The strong 
competition on the international fur market forces breeders to speed up the genetic progress in fur 
animal populations. In Poland one of the most important fur animals is the arctic fox (Alopex 
lagopus). The arctic fox belongs to the class Mammalia, order Carnivora, family Canide, and genus 
Alopex. Farmed arctic foxes descend from the Alaskan blue fox and the Greenland blue fox. The 
selection of foxes, both arctic (Alopex lagopus) and silver (Vulpes vulpes), has always been oriented 
towards improvement of conformation and coat traits as well as reproductive performance. The 
most important fur coat traits affecting the pelt price are: pelt size, fur coat quality and colour type 
(FILISTOWICZ et al. 1999). 

Up to now selection of foxes is mainly done on farms, based on a simplified selection index 
and work is underway to set up a national routine genetic evaluation based on BLUB. A natural 
further development in selection methods would be the incorporation of the molecular information 
through marker assisted selection, but before this can be done information on genes responsible for 
a significant proportion of genetic variation of “fur traits” is required. Unfortunately, such an 
analysis is hampered, by poor information on the blue fox genome, including the polymorphism and 
localisation of both, markers and functional genes and on linkage groups (KLUKOWSKA et al. 2002; 
ROGALSKA-NIŻNIK et al. 2003; SZCZERBAL et al. 2003a, 2003b; ŚWITOŃSKI et al. 2003). In the 
current paper we (i) assess polymorphism of 20 microsatellite markers (known to be polymorphic in 
dogs) based on individual genotyping, (ii) test for association between selected markers and body 
size based on samples from selective DNA pooling, (iii) investigate asymptotic properties of 
statistics representing tests from the power divergence family, which we applied to test for 
association. 

Material 
For the analysis 130 DNA samples from blue fox were available, including individuals from the 
Norwegian type and the Finnish type. Those types markedly differ in body size, so that the 
Norwegian type represents larger, while the Finnish type – smaller animals. 
 A fraction of the whole sample was subjected to individual genotyping in order to assess 
polymorphism of the following microsatellite markers known to by amplifiable in dogs: 
REN112I02 (localisation in canine genome - CFA01), C02.342 (CFA02), C03.629 (CFA03), 
FH2732 (CFA04), C05.771 (CFA05), FH2734 (CFA06), C08.410 (CFA08), G06401 (CFA09), 



G7.4    szyda@ar.wroc.pl 

-2- 

REN153O12 (CFA12), REN227M12 (CFA13), FH2763 (CFA14), REN275L19 (CFA16), FH3047 
(CFA17), REN100J13 (CFA20), REN128E21 (CFA22), LEI002 (CFA27), REN248F14 (CFA30), 
REN43H24 (CFA31), REN106I07 (CFA36), and REN67C18 (CFA37). The selection of markers 
was based on information from the dog genome – heterozygosity (possibly high) and localisation 
(each marker on different canine chromosome). 
 Based on the heterozygosity observed in individual genotyping as well as on amplification 
properties (similar primer annealing temperature) markers: C03.629, C05.771, C08.410, 
REN227M12, REN275L19, and LEI002 were chosen for the further analysis with the DNA 
pooling. Subsequently, all 130 samples were subjected to DNA pooling (Fig. 1). The experiment 
was designed in the way that four pools were formed: two from DNA of the Finnish type foxes (41 
and 36 individuals) and two from the Norwegian type (34 and 29 individuals). During the analysis it 
occurred that about 20% of samples did not have DNA of quality sufficient for pooling. Since the 
available sample was rather small, individuals from the same type were assigned to each of two 
pools by random sampling with replacement – meaning that DNA from some individuals appeared 
in both pools. 
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Fig. 1. Allele frequencies observed at each of six markers used in DNA pooling. For a given marker: each of four 
columns represents one pool - two pools for the Norwegian and two pools for the Finnish type, bars with different 

backgrounds represent different alleles. 

Methods 
The statistical analysis of data from DNA pooling comprises the univariate and multivariate logistic 
regression. While the former approach requires aggregation of data, so that one allele is tested 
against all the others and allows for the comparisons of two pools at a time, the latter fits a 
distribution to all alleles observed at a given marker in each of four pools. 

Univariate distribution - odds ratio 

The hypotheses tested by the univariate model can be expressed by '0 : iiH ππ =  and '1 : iiH ππ ≠ , 
where iπ  and 'iπ  are the allele frequencies of a given marker observed respectively in pools i and i’ 
while { }4,3,2,1', ∈ii  and 'ii ≠ . A standard test statistic for that case is the natural logarithm of Odds 
Ratio ( ψln ): 
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where, niA and ni’A represent number of copies of allele A in the i-th and i’-th pool respectively, niA- 
and ni’A- are the number of copies of alleles different than A respectively for the i-th and i’-th pool, c 
represents a constant providing a better agreement of ψln  with its asymptotic normal distribution 
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in case of small allele counts. Here, following HALDANE (1956) and simulation results of AGRESTI 
(1999), c=0.5 was used. Variance of ψln  is a function of the observed allele counts:  
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 Apart from the nominal significance of ψln , results of the univariate analysis are presented 
in the form of 0.01 confidence intervals (CI) of ψln  expressed by the standard formula based on 
the normal approximation of its asymptotic distribution: 

( ) ( )ψψ σψψσψ ˆln005.0ˆln005.0 ˆlnlnˆln zz +<<− . 

Multivariate model - power divergence statistics 
A multivariate model can be applied to the whole data table without the need of allele count 
aggregation. In such case a set of possible hypotheses can be tested by fitting the following models: 
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− jijkH ππ =:0   vs. jijkH ππ ≠:1   fitting model 2: ( ) ijkjijk epit += αlog , 

− jkijkH ππ =:0   vs. jkijkH ππ ≠:1   fitting model 3: ( ) ijkkjijk epit ++= βαlog , 

where, π and p represent respectively estimated and observed allele frequency; µ represents the 
overall mean, α - allele effect, β – type effect (i.e. Norwegian or Finnish) and e – the residual effect; 
subscripts i, j, k stand respectively for pool within each type ( { }2,1∈i ), allele { }rj ,...,1∈  and type 
( { }2,1∈k ). Note that subscript r represents a reference category – which is here the frequency of the 
last allele.  
 Comparing fit of the above models can be simplified to the problem of comparison between 
the observed allele frequencies and the allele frequencies estimated by each of the above models. 
For that purpose CRESSIE and READ (1984) describe a family of power divergence test statistics, 
which compare the ratio of observed and expected cell counts scaled by the parameter λ: 
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 (OSIUS and ROJEK 1989), 

where, n and n̂  represent observed and expected cell counts respectively, na is the number of alleles 
at marker j and np is the number of parameters fitted by the model, while other subscripts are as 
above. In the analysis of fox data we considered three different values of λ, yielding a well known 
Pearson goodness-of-fit test [X(1)], Freeman-Tukey test [X( 2

1− )] and Cressie-Read test [X( 3
2 )]. 

Furthermore, in order to better account for the sparseness of data tables, we applied standard normal 
transformation to the Pearson goodness-of-fit test with moments derived by OSIUS and ROJEK 
(1989): 
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comprising: 
− A case of “fast increasing harmonic mean”, assuming ( ) ( )141 −= aX nµ  and ( ) ( )182

1 −= aX nσ , 
further denoted as Z1. 

− A case of “increasing arithmetic mean”, assuming the same mean as above: ( ) ( )141 −= aX nµ , 

but a modified variance ( ) ( ) 1
2

1 18 SnaX +−=σ  accounting for small cell counts and probabilities, 
further denoted as Z2. 
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− A general case, again assuming the same mean: ( ) ( )141 −= aX nµ  and a reduced variance 

( ) ( ) 2
2

1 18 SnaX −−=σ , further denoted as Z3. 
The Bayesian Information Criterion: ap nnLBIC 4lnln2 +−=  was calculated as an additional 
measure of model fit. 

Bootstrap 
A parametric bootstrap was used in order to obtain empirical significance for the six test statistics, 
which were applied to the fox data [i.e. for X(1), X( 2

1− ), X( 3
2 ), Z1, Z2, Z3]. Following this 

approach 1000 data tables were generated under each model meaning that allele counts were 
generated based on marginal sums of alleles at each pool and allele frequencies estimated by a 
given model (WINKLER 1996). 

Simulations 
Apart from analysing the particular data set, we were also interested in evaluating asymptotic 
properties of tests from power divergence family and their normalised versions. For that purpose we 
simulated data tables assuming various constellations underlying equiprobable as well as skewed 
null hypotheses. The hypotheses were defined in terms of allele frequencies, so that: 
− For the equiprobable null hypothesis the allele frequencies followed a uniform distribution, 

across possible alleles. 
− For the skewed hypothesis frequency of one allele was set to 0.5 while remaining allele 

frequencies were assigned a uniform distribution. 
− Additionally, for skewed hypotheses an erroneous allele assignment was simulated (e.g. allele 

140 was wrongly assigned as 144) with two error rates of 5% and 15%, in order to imitate the 
problem of stottering bands, which occurs in DNA pooling data. 

Apart from allele frequencies, other parameters used for data generation were: sample size (40, 70, 
200 individuals) and allele numbers (3, 4, 5 alleles). For each set of parameters 1000 data sets were 
generated. Note that with increasing allele numbers and skeweness in allele frequencies, as well as 
with decreasing sample size the sparseness of the data table increases. Furthermore, for model 1 
skewed hypothesis is no longer the null hypothesis. 

Results 
Testing trait-marker association in real data 

As already mentioned above, in the first step of the analysis, for two given pools the comparison 
was made between the ratio of frequency of one allele against an aggregated frequency of all the 
other alleles using ψln , in order to go around the sparseness of the original (not aggregated data 
table). Theoretically, one would expect that when two pools belonging to the same type are 
compared result would be nonsignificant, whereas for comparing pools from two different types 
significant outcome would occur when an association between body size and a marker allele 
frequency exists. Considering nominal significance levels depicted in figure 2 it can be seen that 
cases exist where a small type I error corresponds to comparison of the same types. Nevertheless, 
for alleles of marker C03.629 differences in allele frequencies between the Finnish and the 
Norwegian type are significant amounting to α=0.00168 and α=0.00004, while corresponding 
comparison between two pools of the Finnish type with α=0.34643 remain nonsignificant. 
Consistent results can also be observed for marker REN227M12, were none of comparisons yields a 
significant result – indicating no association between this marker and a trait studied. 
 When analysing estimated CI of ψln  given in figures 3 and 4, a nonsignificant (at 0.01 
level) outcome is marked by a CI containing zero. Note, that results for C03.629 and REN227M12 
are also confirmed on those figures. Additionally, each of tested alleles of C05.771 CI indicates 
significant differences between different fox types and nonsignificant differences for the same 
types. However, in case of other markers results are inconsistent with either significance pattern 
varying among alleles tested or showing significant differences between pools of the same types. 
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Fig. 2. Nominal type I error rate (α) for ψln  comparing allele frequencies belonging to different (●) and the same (○) 

types of blue fox. 
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Fig. 3. CI for ψln  estimated assuming α=0.01 for comparison of different types of blue fox. 
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Fig. 4. CI for ψln  estimated assuming α=0.01 for comparison of the same types of blue fox. 

 The next step comprised fitting models 1-3 to the original (not aggregated) data, what on 
one hand provides means for testing more precise hypotheses, but on the other hand sparseness of 
the data causes that the reliability of inferences suffers from poor agreement with asymptotic 
conditions. Table 1 summarizes information on the quality of model fit as well as asymptotic (based 
on asymptotic test distribution) and empirical (based on parametric bootstrap) P-values. 
Considering values of BIC and asymptotic P-values it is evident that none of the applied models fit 
the data. Even if separate allele frequencies are assigned to each type, a common parameter does not 
suffice to describe variation in allele frequencies within pools of the same type. However when P-
values based on bootstrap are considered one can conclude that for markers REN227M12 and 
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REN275L19 model fitting the same allele frequency to all the pools is sufficient (indicating no 
association) while for the remaining four markers type-specific allele frequencies are required. 

Table 1. Information on fitting multivariate logistic models to blue fox data. Models 1-3 are described in text, „Obs.” 
denotes the full model fitted to the observed cell counts. LnL is the natural logarithm of model likelihood. 

Model lnL BIC 
Power divergence statistics 

Asymptotic P-values     Empirical P-values
   X(1) X( 2

1− ) X( 3
2 ) Z1 Z2 Z3 

C03.629 
1 -443.83 890 534.7 

0.000  0.000 
567.0 
0.000  0.000 

498.3 
0.000  0.000 

91.7 
0.000  0.000 

90.4 
0.000  0.000 

92.2 
0.000  0.000 

2 -403.20 817 402.5 
0.000  0.006 

490.7 
0.000  0.000 

388.6 
0.000  0.000 

68.3 
0.000  0.006 

66.8 
0.000  0.006 

68.6 
0.000  0.006 

3 -296.06 614 160.8 
0.000  1.000 

269.4 
0.000  1.000 

167.7 
0.000  0.814 

25.6 
0.000  1.000 

23.5 
0.000  1.000 

25.6 
0.000  1.000 

Obs. -192.77 430       
C05.771 

1 -320.11 642 209.5 
0.000  0.000 

311.6 
0.000  0.000 

211.4 
0.000  0.000 

50.4 
0.000  0.000 

50.7 
0.000  0.000 

51.5 
0.000  0.000 

2 -315.15 634 232.6 
0.000  0.000 

279.3 
0.000  0.000 

222.2 
0.000  0.000 

56.1 
0.000  0.000 

56.5 
0.000  0.000 

56.5 
0.000  0.000 

3 -274.08 556 118.3 
0.000  0.984 

209.0 
0.000  0.935 

124.0 
0.000  0.000 

27.6 
0.000  0.984 

26.2 
0.000  0.988 

26.8 
0.000  0.987 

Obs. -195.27 407       
C08.410 

1 -309.12 620 289.0 
0.000  0.000 

339.1 
0.000  0.000 

279.6 
0.000  0.000 

70.2 
0.000  0.000 

70.6 
0.000  0.000 

71.2 
0.000  0.000 

2 -292.13 588 244.2 
0.000  0.000 

303.0 
0.000  0.000 

240.9 
0.000  0.000 

59.1 
0.000  0.000 

59.1 
0.000  0.000 

59.5 
0.000  0.000 

3 -186.47 381   42.1 
0.204  0.543 

  62.8 
0.057  1.000 

  43.7 
0.187  1.000 

  8.5 
0.014  1.000 

  7.9 
0.026  1.000 

  8.4 
0.016  1.000 

Obs. -159.94 337       
REN227M12 

1 -335.95 674 136.6 
0.000  0.000 

276.2 
0.000  0.000 

149.1 
0.000  0.000 

32.1 
0.000  0.000 

32.4 
0.000  0.000 

33.0 
0.000  0.000 

2 -296.45 597 109.0 
0.000  0.541 

145.9 
0.000  0.474 

106.7 
0.000  0.016 

25.3 
0.000  0.541 

25.2 
0.000  0.543 

25.4 
0.000  0.541 

3 -277.19 563   58.4 
0.076  1.000 

  93.6 
0.000  1.000 

  60.9 
0.063  1.000 

12.6 
0.000  1.000 

12.0 
0.000  1.000 

12.4 
0.000  1.000 

Obs. -256.52 530       
REN275L19 

1 -389.02 781 193.3 
0.000  0.000 

224.9 
0.000  0.000 

189.6 
0.000  0.000 

37.0 
0.000  0.000 

37.0 
0.000  0.000 

39.3 
0.000  0.000 

2 -372.17 752 168.4 
0.000  0.000 

179.7 
0.000  0.000 

164.0 
0.000  0.000 

31.9 
0.000  0.000 

31.9 
0.000  0.000 

32.1 
0.000  0.000 

3 -352.60 720 112.6 
0.000  0.328 

155.9 
0.000  0.184 

116.0 
0.000  0.002 

20.5 
0.000  0.328 

19.8 
0.000  0.346 

21.9 
0.000  0.300 

Obs. -284.07 598       
LEI002 

1 -470.62 944 157.5 
0.000  0.000 

228.7 
0.000  0.000 

163.2 
0.000  0.000 

25.0 
0.000  0.000 

25.0 
0.000  0.000 

25.2 
0.000  0.000 

2 -428.65 868 113.0 
0.000  0.458 

117.6 
0.000  0.438 

108.7 
0.000  0.223 

17.2 
0.000  0.458 

17.0 
0.000  0.461 

17.3 
0.000  0.458 

3 -417.75 858   78.0 
0.047  0.992 

117.6 
0.000  0.986 

  79.7 
0.043  0.784 

11.0 
0.001  0.992 

10.8 
0.001  0.993 

11.0 
0.001  0.992 

Obs. -371.29 787       
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Empirical distribution of power divergence statistics 
A comparison of the empirical distributions of tests from the power divergence family is shown on 
figure 5. Distribution of the X statistics varies with the degrees of sparseness, expressed by the 
number of alleles and sample size. Although somewhat conservative for sparse data, X statistics 
remain in good agreement with their asymptotic distributions for denser data. The robustness of the 
Z statistics towards sparseness of data is manifested by the fact, that their distribution does not 
depend much on the sample size and number of alleles, but unfortunately, their type I error rates are 
very low for different testing conditions – making those tests extremely conservative. 
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Fig. 5. P-values realised for a 0.05 critical value corresponding to the asymptotic distribution. Three bars for each test 

statistics represent respectively (from left to right) simulated designs with 3, 4 and 5 marker alleles. Three graphs 
represent respectively (from left to right) simulated designs with 40, 70 and 200 individuals. 

 As shown on figure 6 the reason for their conservativeness is that the expression for ( )1Xµ  as 
proposed by OSIUS and ROJEK (1989) seems to overestimate the true mean of X(1) regardless of 
testing conditions. On the other hand the standard deviations are always underestimated. As can be 
further recognised from table 1 and figures 5-6 not much difference is observed between three 
different types of the normalised tests. Summarising the simulation results we observe that all 
statistics tend to be conservative with the exception of X tests for sparse samples (figures 6-7). 

Conclusions 
The investigations of the asymptotic properties of test statistics our simulations showed that the 
Pearson’s goodness-of-fit test has reasonable good asymptotic properties and unless a modified 
formulation of mean is derived, the normalised statistics are not recommended. Our findings remain 
in good agreement with simulation results presented by GARCIA-PÉREZ and NÚÑEZ-ANTÓN (2001). 
 Genetically, some evidence of the association between marker allele frequency and body 
size observed for fox genome regions corresponding to canine chromosomes 3 and 5 is observed. 
Since no linkage and association studies have been curried in blue for - out findings indicate that 
those two chromosomes could be the first choice for further analysis in order to verify our 
preliminary result. 
 Using power divergence tests for extremely sparse data causes problems with their 
asymptotic distribution and, if possible, exact or empirical type I error rates are recommended. The 
best asymptotic performance was observed for the classical test – Pearson’s goodness-of-fit test, 
while its normalised versions failed to keep the assumed significance level. 
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Fig. 6. Realised distribution of Z statistics across various sets of simulated conditions. The left and the right diagrams 

show respectively means and standard deviations (sd) of test statistic calculated from 1000 realisations. Z1 is 
represented by circles, Z2 by triangles, and Z3 by squares. 
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Fig. 7. Realised P-values of X statistics realised for a 0.05 asymptotic distribution cut-off, across various sets of 

simulated conditions. X(1) is represented by circles, X( 2
1− ) by squares, and X( 3

2 ) by triangles. 


