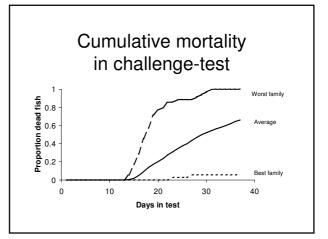


¹Norwegian University of Life Sciences ² AKVAFORSK

- Models were compared at two different endpoints of recording
 - 66% overall mortality (original testing design)
 - 50% overall mortality (Gjøen et al., 1997)
 Expected to be optimal for cross-sectional models for binary traits


- Data
- Data consisted of challenge-test and field survival data
- Only challenge-test data was used in genetic evaluation of families

Challenge-test data

- Test conducted in 1991
- Infection by means of cohabitants
- Population consisted of 171 full-sib families
 - 171 dams, 93 sires
- Number of test individuals per family averaged 33.5
 Date of death recorded
- 30 d from first mortality to end of test
- Overall mortality = 66% (6 100%)
- All fish kept in the same tank
- Families kept separate at earlier age

Field (sea) data

- Natural disease outbreak in 1992
- · Population consisted of full-sibs of fish tested in 1991
 - 120 families
 - 40 tagged individuals per family
 - Date of death recorded
- 56 d from first mortality to end of test (antibiotic treatment)
- Overall mortality = 35% (0 75%)
- · All fish kept in the same sea cage

Statistical models

- 1. Linear cross-sectional
- (μ, sire, dam, common environment)
- 2. Threshold cross-sectional
- (μ, sire, dam, common environment)
- 3. Proportional hazards (Weibull frailty)
- (baseline hazard, sire, dam)4. Repeatability linear test-day
- (time regression, sire, dam, common environment)

Sire and dam ~ $N(\mathbf{0}, \mathbf{A}\sigma_{sd}^2)$ Common environment ~ $N(\mathbf{0}, \mathbf{I}\sigma_c^2)$

Model comparison

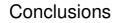
- Models vary due to several factors:
 Different trait definitions
 - Different distributions assumed
 - Parameters on different scales (observable scale, underlying scale)
 - Time perspective (early vs. late mortalities) may or may not be accounted for
- Parameters of the models cannot be compared directly

Comparison criteria

- Ability to predict rate of family rate of survival in the field (sea)
- Survival probably affected by additive genetic and common environmental effects in both field and challenge test data
 - Family effect used as predictor
 sire + dam + common environment

Comparison criteria

- The predictive ability of the family effect was measured as:
 - Pearson correlation
 - Family effects rate of field survival
 - Pearson goodness of fit statistic (χ²)
 Logistic regression of field survival on predicted
 - family effects
 - Criteria based on deviance between expected and predicted number of failures and successes


Heritability							
Model	Туре	h² (66% mort.)	h² (50% mort.)				
1	Linear	0.38 (0.095)	0.31 (0.09)				
2	Threshold	0.59 (0.14)	0.46 (0.13)				
3	Weibull	0.63	0.57				
4	Repeatability	0.02 (0.007)	0.02 (0.007)				

Model	Туре	Correlation (66% mort.)	Correlation (50% mort.)	χ ² (66% mort.)	χ ² (50% mort.)
1	Linear	0.7063	0.7091	422	427
2	Threshold	0.7345	0.7166	396	418
3	Weibull	-0.7199	-0.7189	410	411
4	Repeatability	0.7534	0.7332	386	409

Correlations family EBVs							
Model	Туре	1	2	3	4		
1	Linear		0.991	-0.930	0.939		
2	Threshold	0.999		-0.940	0.963		
3	Weibull	-0.936	-0.935		-0.969		
4	Repeatability	0.972	0.973	-0.976			

Conclusions

- The repeatability linear model for test-day survival had the best predictive ability for both scenarios
- Advantageous to take time perspective into account
 The predictive ability of the Weibull survival model was probably reduced due to its lacking ability to predict common environmental effects

- High correlation between EBVs from different models
- Testing stopped at 50% vs. 66% mortality
 - Reduced heritability of cross-sectional models
 Sampling effect?
 - Environment may change more rapidly during the initial phases of test-period
 - Infection by means of cohabitants
 - Cross-sectional models cannot account for environmental changes over time

Thanks