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QTL mapping, gene identification 
As a starting point, it is taken here that it will generally be interesting to identify the gene and 
causative mutation underlying a QTL. This information is not purely of fundamental interest 
and should also interest practical breeders who wish to apply QTL mapping: selection on 
QTL’s increases the pace of selection, therefore involving higher risks of unwanted negative 
responses or surprises of evolving gene-gene and gene-environment interactions. 
Fundamental knowledge from identifying the underlying gene will help to understand the 
underlying biology and therefore reduce such risks of adverse selection. Also, generalizability 
across species is expected to increase, because exact gene-effects may be less replicable, 
whereas effects of pathways are. 
In identifying genes underlying QTL there is still a gap to be filled after applying the latest 
fine mapping tools. With linkage analyses, QTL regions can be identified of roughly half a 
chromosome (about 1000 genes), which could be reduced further to regions of some cM by 
fine mapping (about 100 genes). Thereafter, however, tools based on associations with 
markers will generally cease to bring further clarification. Hence, extra tools and extra 
information are needed, where we could consider omics data (transcriptomics, proteomics), 
and bioinformatics tools and data.  
 
Statistical complexity 
QTL results are often little comparable between experiments. There are a number of reasons 
for this, some genetical (e.g. the mutation is not present in another experiment), some related 
to a too narrow focus (e.g. focus on pathways could give already a more consistent picture), 
and some statistical. In the latter category, current QTL mapping experiments are likely 
suffering from large false negative error rates (genes being there are not detected), due to the 
application of very stringent test thresholds. The statistical problems will be further increased 
by the sketched trend to need to combine more sources of data and to combine different tools. 
Often this is done in “pipeline” constructions where errors made in one step are not taken into 
account in the following step, therefore accumulating errors which may lead to artifacts. In 
order to handle multiple sources of information and multiple tools in a sensible way, leading 
to the proper detection of QTL’s, will require adoption of new statistical tools and paradigms. 
 
False Discovery Rate 
A first “paradigm” shift needed in statistics will be wider use of False Discovery Rates 
(FDR). Statistical testing is a problem of balancing two types of errors: false positive and 
false negative errors. The common approach is to steer on false positives, accepting virtually 
no chance to make any false positive error. However, especially when many tests are being 
made, this requires the use of very stringent thresholds, and therefore a very high false 
negative error rate (many real genes are being missed). A paradigm shift here is the 
acceptance of much higher false positive rates, realizing that this comes with also detecting 
more true positive results. An example from a microarray analysis for instance shows the 
following results in which 20 more real genes are found by relaxing the thresholds (estimating 
the number of false positives using the SAM technique): 
 



Threshold Postives (of which false) Extra real genes detected 
Stringent 25 (1)  
Relaxed 46 (6) +20 

For QTL mapping, application of FDR could also be interesting, especially when combined 
with a multi-QTL model in which a QTL is modeled in every bracket (Meuwissen, GSE, 
2005). In this type of approach, a prior could be applied to assign high probability to have 
many genes of small effect, with only a few genes of large effect, for instance in the form of 
an exponential distribution. Hayes and Goddard (2001) showed that such an experimental 
distribution fits actual data on QTL effects quite well. 
 
Accumulating errors in pipelines 
Common approaches for analysis of microarray data imply the sequential application of a 
larger number of statistical estimation and correction procedures. For microarray analysis this 
involves steps like: image analysis, intensity estimation from the image, background 
correction, correction for dye bias, correction for heterogeneity of variance over intensity 
range, corrections of level and heterogeneity of variance between slides, before to proceed to 
a general statistical analysis of gene effects based on multiple slides. Also in QTL mapping a 
sequence of steps is performed, notably the making of marker maps, allele scoring and data 
pre-adjustment is done in separate steps. It is becoming evident now that these sequential 
procedures can introduce artifacts, for instance markers wrongly placed on linkage maps can 
produce erroneous QTL results. Also bioinformatics data that may be used to ultimately 
annotate genes have many sources of potential error: it is the largest databases that are the 
least curated (so in general poor data is overwhelming the good data), and making 
comparative links between species (on which animal breeding will largely rely) can err 
because of inaccuracies in comparative maps, and mistakes caused by gene duplications. 
Also, the matching of traits between species can be risky, and in order to do that properly, 
good trait ontologies should be developed.  
Two solutions to the problem of accumulating errors in pipelines are to perform more 
integrative analyses (which may be feasible in some areas, but not in all), and to assign levels 
of confidence to information, which could be used in further steps. Hereto, meta-analysis 
tools or Bayesian modeling could be used to sequentially update knowledge and uncertainty. 
 
More integrative solutions: supervised clustering to use pathway information 
Common “unsupervised” clustering techniques (e.g. k-means, PCA) are generally not fully 
rewarding as the pure statistical association brings little biological soundness to the clusters 
being made. More useful clusterings can be obtained using supervised clustering techniques. 
This can for instance be applied to combine gene expression data and various bioinformatics 
data sources into gene identification and QTL mapping tools. In this approach, several sources 
of data (e.g. from pathway databases, sequences and literature) are used as “priors” in 
clustering gene expressions, so adding information and cause-effect relationships which 
would otherwise not be available from pure statistical association.  
 
Conclusions. In order to fill the last steps to ultimately identify genes underlying QTL, a 
large array of tools and (genomics) data will have to be combined and streamlined. Some 
statistical problems (and directions for solutions) are indicated to help in this. In general more 
relaxed (in using FDR) and better (in pipelines) approaches to handle errors should become in 
use. The ultimate identification of genes, but also the bioinformatics information on e.g. 
pathways, will ultimately also help breeders to better understand gene effects, to make QTL 
results more generalizable across populations, and so to devise more robust selection 
programs based on molecular data. 


