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Covariables in RRM

• Polynomials
– Artifacts
– Poor computing properties without 

diagonalization
– Cryptic parameters
– Poor modeling of localized variation

• Linear splines
– Good computing properties
– Parameters on multiple-trait scale
– Properties unknown
– Not clear how to choose knots



Objectives

• Present properties of random 
regression models using linear 
splines

• Provide guidelines for selecting the 
number and position of knots



Why computations with linear 
splines are more robust?

General random regression model:
yijk =…+ Φ(t)aj + ….  

Polynomials: Φ= [φ1 φ2 .. φn] 
all coefficients nonzero

Splines: Φ= [0..0  1-t  t  0 ..0] 
only 2 coefficients nonzero

Sparser equations with splines!



(Co)variances & correlations
With 2 knots:

a(t)=(1-t)a1+ta2 0 ≤ t ≤ 1   var(a)=G
var[(a(t)]=(1-t)2g11+t(1-t)g12 +t2*g22

cov[a(0),a(t)] =  (1-t)g11+tg12

If g11=g22=1, g12=ρ
Var[a(t)]= =(1-t)2+t(1-t)ρ + t2

Var[a(0)]=1; var[a(1)]=1; var[a(0.5)]=0.5+0.5ρ
Cov[a(0),a(1)]=ρ
Cov[a(0),a(t)]=1-t(1-ρ)



Variances with linear splines
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Variances with different 
number of knots
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Modification to smoothen 
variances

Replace:  Φ(t) = [… 1-t      t  …] with
Φ(t) = [… (1-t)q tq …] 0 ≤ q ≤ 1 

Then
var[(a(t)]=(1-t)2q+tq (1-t)q + ρt2q

cov[a(0),a(t)] =  (1-t)q+ρtq

q can be set so that var(a(0.5))=1

q=log[2(1+ ρ)]/[(2*log(2)]
ρ=0.5 q=0.69



Variances after corrections 
(ρ=0.5)

No modification
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Simulation study
Data simulation

5 knots (t=1,2,3,4,5) 
corr(a1,a5)= 0.0 to 0.9

Models for analyses
5 knots (5K)
2 knots (2K)
2 knots with modification (2K-mod)

Runs
1000 sires with 10 observations each
10 replicates



Variance of prediction at one extreme
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Variance of prediction in the middle
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Accuracy of prediction at one extreme
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Accuracy of prediction in the middle
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Rules for selection of knots 
• Select knots so that correlations 

corresponding to adjacent knots:
≈0.8 for regular linear splines
≈0.6 for splines with covariables modified

• Example: dairy
– knots at 10, 70, 250 and 350 d

• Under/over predictions average out 
over the trajectory



Conclusions

• Computing costs with linear splines low because of  
sparcity of LHS of mixed model equations

• Some problems with convexity/inflation/deflation 

• Problems greatly decreased with a simple 
modification

• RRM with linear splines simple and robust
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