Properties of random regression models using linear splines

Ignacy Misztal

University of Georgia, USA

Breeding values in random regression models

trajectory

Covariables in RRM

- Polynomials
 - Artifacts
 - Poor computing properties without diagonalization
 - Cryptic parameters
 - Poor modeling of localized variation
- Linear splines
 - Good computing properties
 - Parameters on multiple-trait scale
 - Properties unknown
 - Not clear how to choose knots

 Present properties of random regression models using linear splines

• Provide guidelines for selecting the number and position of knots

Why computations with linear splines are more robust?

General random regression model:

 $y_{ijk} = \dots + \Phi(t)a_j + \dots$

Polynomials: $\Phi = [\phi_1 \phi_2 .. \phi_n]$ all coefficients nonzero

Splines: Φ = [0..0 1-t t 0 ..0] only 2 coefficients nonzero

Sparser equations with splines!

(Co)variances & correlations

With 2 knots:

 $\begin{aligned} a(t) &= (1-t)a_1 + ta_2 \quad 0 \le t \le 1 \quad var(a) = G \\ var[(a(t)] &= (1-t)^2 g_{11} + t(1-t)g_{12} + t^{2*}g_{22} \\ cov[a(0), a(t)] &= (1-t)g_{11} + tg_{12} \end{aligned}$

If $g_{11}=g_{22}=1$, $g_{12}=\rho$ $Var[a(t)] = =(1-t)^2+t(1-t)\rho + t^2$ Var[a(0)]=1; var[a(1)]=1; $var[a(0.5)]=0.5+0.5\rho$ $Cov[a(0),a(1)]=\rho$ $Cov[a(0),a(t)]=1-t(1-\rho)$

Variances with linear splines

Variances with different number of knots

Modification to smoothen variances

Replace: $\Phi(t) = [\dots \ 1-t \ t \ \dots]$ with $\Phi(t) = [\dots \ (1-t)^q \ t^q \ \dots]$ $0 \le q \le 1$

Then

var[(a(t)]= $(1-t)^{2q}+t^{q}(1-t)^{q}+\rho t^{2q}$ cov[a(0),a(t)] = $(1-t)^{q}+\rho t^{q}$

q can be set so that var(a(0.5))=1

 $q = \log[2(1 + \rho)]/[(2*\log(2))]$ $\rho = 0.5 \rightarrow q = 0.69$

Variances after corrections (ρ=0.5)

Simulation study

Data simulation 5 knots (t=1,2,3,4,5) corr(a_1,a_5)= 0.0 to 0.9

Models for analyses 5 knots (5K) 2 knots (2K) 2 knots with modification (2K-mod)

Runs

1000 sires with 10 observations each10 replicates

Variance of prediction at one extreme

Corr(a₁,a₅)

Variance of prediction in the middle

Accuracy of prediction at one extreme

Accuracy of prediction in the middle

Rules for selection of knots

 Select knots so that correlations corresponding to adjacent knots:

≈0.8 for regular linear splines≈0.6 for splines with covariables modified

• Example: dairy

knots at 10, 70, 250 and 350 d

Under/over predictions average out over the trajectory

- Computing costs with linear splines low because of sparcity of LHS of mixed model equations
- Some problems with convexity/inflation/deflation

- Problems greatly decreased with a simple modification
- RRM with linear splines simple and robust