

Institute of Animal Breeding and Husbandry with Veterinary Clinic, Martin-Luther-University of Halle-Wittenberg¹ and Institute of Mathematics, University Potsdam, Germany²

M. WENSCH-DORENDORF¹, H.H. SWALVE¹ and J. WENSCH²

Introduction

- computer programs to be used for routine genetic evaluations need to be tested and checked
- testing of such programs requires simulated data with known phenotypes and breeding values

Method of simulation

- simulate randomized breeding values for base animals (u_{b}) with mean zero
- compute breeding values for nonbase animals (u_{nb}) from their respective parents by using $u_{ns}=0.5(u_s+u_d)$ substitute breeding values in the mixed model equation and
- rearrange to compute phenotypic data the generated data satisfy the mixed model equations **exact**
- datasets with N=10000, 17783, 31623, 56235, 100000, 177828, 316228, 562340, 1000000 animals were simulated with single, two and three trait model
- ⇒ breeding value estimation with PEST

- The idea
- generate breeding values for base animals, derive for nonbase animals substitute the values in the mixed model equations and evaluate pheno-
- typic data with these equations Thompson (1997): Proposal for single trait model
- \Rightarrow the solutions to the mixed model equations yield the exact values of the simulated ones

Method of breeding value estimation

- a Fortran90 PEST-Version (Groeneveld) was used for breeding value estimation (single, two and three trait model)
- three solvers were tested: -IOC: iterative solver using gauss-seidel-algorithm, all coefficients stored in memory (in memory iteration)
 - -IOD_GS: iterative solver using gauss-seidel-algorithm as iteration on data
 - -SMP: direct solver for sparse matrices
- Results
 - runtime t was measured
 - the figures show the (N, t) pairs (in Log10-scale) sorted by solvers and by number of traits (number 1, 2 or 3 after solver means single, two or three trait model)

Conclusions

- the iterative solvers are faster than SMP runtime for SMP grows quadratically (estimation of a from: Log10(t)=b+a*Log10(N) is approx. 2.0)
- runtimes for IOC and IOD_GS grow almost weakly linearly (estimations of a were mostly >1.0 and < 2.0), but the values of a for IOC solver were often smaller than for IOD_GS
- · differences between simulated and estimated breeding values were very small - averages for differences were 1.4*10⁻⁵ to 6*10⁻⁶ for the small N's and $4*10^{-6}$ to $2*10^{-6}$ for larger N's
- ⇒ the method is very suitable to simulate multiple trait phenotypic data from generated breeding values which can be estimated exact

Derivation for multiple trait model

general mixed model equation mixed model equation simulation equation of phenotypic data $(R=R_0\otimes I, G=G_0\otimes A, G^{-1}=G_0^{-1}\otimes A^{-1})$ (for Z=I): (for none base and base animals for traits k=1,...,n) $\begin{bmatrix} X^T R^{-1} X & X^T R^{-1} Z \\ Z^T R^{-1} X & Z^T R^{-1} Z + G^{-1} \end{bmatrix} \begin{bmatrix} \widehat{\beta} \\ \widehat{u} \end{bmatrix} = \begin{bmatrix} X^T R^{-1} y \\ Z^T R^{-1} y \end{bmatrix} \Rightarrow$ $\begin{bmatrix} X^T R^{-1} X & X^T R^{-1} \\ R^{-1} X & R^{-1} + G^{-1} \end{bmatrix} \begin{bmatrix} \hat{\beta} \\ \hat{u} \end{bmatrix} = \begin{bmatrix} X^T R^{-1} y \\ R^{-1} y \end{bmatrix} \Rightarrow$ $y_{nbk} = X\hat{\beta} + \hat{u}_{nbk}$ $y_{bk} = X\hat{\beta} + \hat{u}_{bk} + \sum_{i=1}^{n} R_k G^i \hat{u}_{bi}$ by using the following equations $(R_i=i-th \text{ row of } R_0 \text{ and } G^i=i-th \text{ column of } G^{-1}_0)$ $RG^{-1} = \begin{pmatrix} R_1 G^1 \\ \vdots \end{pmatrix}$ \widehat{u}_{bi} $A^{-1}\hat{u}_i =$ $R_1G^1 \cdots R_1G$ $\vdots \cdots \vdots$ $R_nG^1 \cdots R_nG^n$ $\sigma_{e_2e_n}$ $G_0 =$ $G_0^{-1} = \begin{pmatrix} G^1 & G^2 & \cdots & G^n \end{pmatrix}$ R_2 $\otimes A^{-1}$

Householder reflection is used to simulate symmetric positive definite matrices: $S=QAQ^T$, Q is an orthogonal matrix, A is a diagonal matrix with eigenvalues λ_i of S in the main diagonal; if all $\lambda_i > 0$ then S is positive definite, using householder reflection to generate Q: $Q(v):=I-2(vv^{T})/(v^{T}v)$, v any vector with dimension n=number of traits

Starting value	s: single trait:			$G_0 = 53.0$ $R_0 = 75$		
Ŭ	two trait:	$G_0 = \begin{pmatrix} 73.969 \\ 7.105 \end{pmatrix}$	7.105 26.031	$R_0 =$	(57.075 (-0.469	-0.469 59.925)
three trait:	$G_0 = \begin{pmatrix} 52.92 \\ -1.16 \\ 1.080 \end{pmatrix}$	$ \begin{array}{cccc} 3 & -1.164 & 1.080 \\ 4 & 33.552 & 22.047 \\ 0 & 22.047 & 20.525 \end{array} $	$R_0 = \left(\right)$	59.692 -2.784 -35.2622	-2.784 64.264 25.091	-35.262 25.091 40.044

