

Introduction

- Cannibalism is a world wide problem
- Selection against cannibalism is difficult
- Group selection is a solution
- Problem: selection candidates are kept individually

Aim

To predict response against cannibalism with individually-housed selection candidates using phenotypes of group-kept relatives

Methods

Pgroup member

$$\begin{split} P_i &= P_{d,i} + \sum_{j=1,n-1} P_{a,j} \\ &= A_{d,i} + E_{d,i} + \sum_{j=1,n-1} \left(A_{a,j} + E_{a,j} \right) \end{split}$$

Breeding goal on CB $H = A_d + (n-1)A_a$

Methods

Classical group selection

Selection criterion: $S = \overline{P}_{group,PB}$ Selection response: $\Delta H \propto [(n-1)r+1]r_{pc}$

Selection based on group housed relatives

 ΔH : regression of H on $\overline{P}_{\text{relatives}} \rightarrow \Delta H = b_{H,\overline{P}rel} i \sigma_{\overline{P}_{rel}}$

Selection response: $\Delta H \propto nr(r_{PC})$

Discussion

- Classical method good response, but not possible in commercial breeding
- CB_{off} good response, but increase in generation interval
- CB_{HS} good response if r_{pc} is low
- Multiple HS and progeny groups → higher accuracy

Conclusion

- Use of group-kept relatives of selection candidates enables efficient breeding against cannibalism.
 - Make direct use of CB info especially with low r_{pc}
- A selection experiment applying this method in chicken lines is currently executed.

Acknowledgements

- This research is part of a joint project of Wageningen University and Hendrix Poultry Breeders (HPB) and was funded by Senter.
- Han Mulder

