Different Selection Strategies for Improving Lactation Milk Yield and Persistency

C. Y. Lin¹ and K. Togashi²

¹Agriculture and Agri-Food Canada

Correspondence: Department of Animal and Poultry Science University of Guelph, Canada

²National Agricultural Research Centre, Hokkaido, Japan

Modification of the Lactation Curve

- Genetic and/or environmental
- Redistribute the genetic gains between different stages of the lactation curve.
- Restricted index approach
- Conventional selection based on lactation EBV
 - The genetic curve is dictated by $G_{305 \times 305}$.

Simultaneous Selection for Lactation Milk and Persistency (Togashi and Lin, 2003)

Selection methods

- Index selection based on stage EBVs
- Index selection based on RR coefficients

- Annual genetic gain assumed to be known
- Subjective redistribution of genetic gains between lactation stages

General Development of a Restricted Index for the Modification of the Lactation Curve

$$I = \sum_{t=1}^{305} b_{t} EBV_{t} = \hat{g}'b$$

$$H = \sum_{t=1}^{305} g_{t} = g'\mathbf{1}$$

$$f = Var(I - H) + \lambda'(D'b - \theta k)$$

$$= b'Gb + \mathbf{1}'G\mathbf{1} - 2b'G\mathbf{1} + \lambda'(D'b - \theta k)$$

$$\begin{bmatrix} G & D & 0 \\ D' & 0 & -k \\ 0 & -k' & 0 \end{bmatrix} \begin{bmatrix} b \\ \lambda \\ \theta \end{bmatrix} = \begin{bmatrix} G\mathbf{1} \\ 0 \\ 0 \end{bmatrix}$$

Maximizing Lactation Milk Yield While Maintaining Constant Persistency (I₁)

• Persistency (P) =
$$\frac{EBV_{280}}{EBV_{60}}$$

• Restriction:
$$\Delta G_{60} - \Delta G_{280} = 0$$

■ Let
$$k=0$$
 and $D=G_{60}-G_{280}$

$$\begin{bmatrix} G & G_{60} - G_{280} \\ G_{60} - G_{280} & 0 \end{bmatrix} \begin{bmatrix} b \\ \lambda \end{bmatrix} = \begin{bmatrix} G1 \\ 0 \end{bmatrix}$$

Maximizing Lactation Milk Yield While Holding the Peak Yield Constant (I₂)

- Restriction: $\Delta G_{60} = 0$
- Let k = 0 and $D = G_{60}$

$$\begin{bmatrix} G & G_{60} \\ G_{60} & 0 \end{bmatrix} \begin{bmatrix} b \\ \lambda \end{bmatrix} = \begin{bmatrix} G\mathbf{1} \\ 0 \end{bmatrix}$$

$$b = [I - G^{-1}G_{60}(G_{60}G^{-1}G_{60})^{-1}G_{60}]^{-1}$$

Improvement of Lactation Milk Yield without Altering the Lactation Curve (I_d)

Restriction:
$$\Delta G_1 = \Delta G_2 = \cdots = \Delta G_{305}$$

 $\Delta G_1 : \Delta G_2 : \cdots : \Delta G_{305} = 1 : 1 : \cdots : 1$

• Let k = 1 and D = G

$$\begin{bmatrix} G & G & 0 \\ G' & 0 & -1 \\ 0 & -1' & 0 \end{bmatrix} \begin{bmatrix} b \\ \lambda \\ \theta \end{bmatrix} = \begin{bmatrix} G1 \\ 0 \\ 0 \end{bmatrix}$$

$$b = \frac{1'1}{1'G^{-1}1}G^{-1}1 \implies b = G^{-1}1$$

Unweighted Linear Index (I_u)

$$I_{u} = EBV_{L} + \frac{EBV_{280}}{EBV_{60}}$$

$$= EBV_{L} + \left[\frac{\mu_{280}}{\mu_{60}} + \frac{1}{\mu_{60}}EBV_{280} - \frac{\mu_{280}}{\mu_{60}^{2}}EBV_{60}\right]$$

$$I_{u} = EBV_{L} + \frac{1}{\mu_{60}}EBV_{280} - \frac{\mu_{280}}{\mu_{60}^{2}}EBV_{60}$$

Weighted Linear Index (I_w)

$$I_{w} = \left(\frac{1}{\sigma_{L}}\right) EBV_{L} + \left(\frac{1}{\sigma_{P}}\right) \frac{EBV_{280}}{EBV_{60}}$$

$$\sigma_{L}\sigma_{P}I_{w} = \sigma_{P} EBV_{L} + \sigma_{L} \frac{EBV_{280}}{EBV_{60}}$$

$$I_{w} = \sigma_{P} EBV_{L} + \sigma_{L} \left(\frac{1}{\mu_{60}} EBV_{280} - \frac{\mu_{280}}{\mu_{60}^{2}} EBV_{60} \right)$$

Six Selection Strategies Compared

1)
$$EBV_L = \sum_{t=1}^{305} EBV_t$$

2)
$$I_1$$
: $\Delta G_{60} - \Delta G_{280} = 0$

3)
$$I_2$$
: $\Delta G_{60} = 0$

4)
$$I_d$$
: $\Delta G_1 = \Delta G_2 = \cdots = \Delta G_{305}$

5)
$$I_u = EBV_L + \frac{EBV_{280}}{EBV_{60}}$$

6)
$$I_{w} = \left(\frac{1}{\sigma_{L}}\right) EBV_{L} + \left(\frac{1}{\sigma_{P}}\right) \frac{EBV_{280}}{EBV_{60}}$$

Evaluation of Genetic Improvement in Persistency

■ Rate of decline:
$$\beta = \frac{\Delta G_{60} - \Delta G_{280}}{220}$$

- $\beta > 0$: Persistency deteriorates.
- β < 0: Persistency improves.
- $\beta = 0$: No change in persistency
- $G_{335x335}$ (Pool et al., 2000) → $G_{305x305}$

Table 1. Genetic responses in lactation EBV, persistency and the rate of decline (B)

Selection strategies	ΔEBV ₁	ΔG_{60}	ΔG_{280}	β
	L	- 60	- 280	,
EBV_L	672	2.28	2.04	1.06
$I_1(\Delta G_{60} = \Delta G_{280})$	669	2.21	2.21	0
$I_2 (\Delta G_{60} = 0)$	120	0	1.25	-5.69
$\mathbf{I}_{\mathbf{d}} \left(\Delta G_1 = \Delta G_2 = \dots = \Delta G_{30} \right)$	5) 560	1.86	1.86	0
I_u	672	2.28	2.04	1.06
I_{w}	509	1.28	2.23	-4.34

Conclusions

- General formula: a useful tool for modifying the shape of lactation curve
- Lactation EBV: the greatest response in lactation milk coupled with the worst persistency
- I_2 (ΔG_{60} =0): the greatest persistency but the least gain in milk.
- $I_1(\Delta G_{60} = \Delta G_{280})$: the method of choice for improving lactation milk without decreasing persistency.
- ullet I_{W} : a viable strategy for simultaneous improvement