G2.8 surachai.suwanlee@boku.ac.at

Evaluation of Ancestral Inbreeding Coefficients: *Ballou's* formula versus Gene Dropping

Surachai Suwanlee

Roswitha Baumung

Johann Sölkner

Ino Curik

University of Natural Resources and Applied Life Sciences Vienna Division of Livestock Sciences, Austria

University of Zagreb, Department of Animal Science, Faculty of Agriculture, Croatia

Ancestral inbreeding coefficient (f_a)

$$f_a = [f_{a(s)} + (1 - f_{a(s)}) f_s + f_{a(d)} + (1 - f_{a(d)}) f_d] / 2$$
 Ballou's formula

Objectives

To determine the validity of Ballou's formula and propose a new method for an unbiased estimation of ancestral Inbreeding

Simulation model

- Population size: 50, 100, 200 with sex ratio 1:2
- Genome: 500 unlinked loci

genotype	relative viability (<i>w</i>)
AA	1
Aa	1- <i>h</i> s
aa	1- <i>s</i>

h is the dominance coefficient of *a*

s is the coefficient of selective against aa

Simulation model

- Genetic model: neutral; s = 0detrimental; s = 0.15h = 0lethal; s = 1
- Initial allele frequency: 0.005, 0.01
- The relative viability of individual is

 $W_i = W_1 W_2 W_3 \dots W_{500}$

Survival: w_i > random number (0- 1)

Simulation procedure

Ancestral inbreeding coefficients (f_a)

- *f_{a-true}* : true proportion of alleles of an individual
 that has undergone inbreeding in the past
- *f_{a-Ballou}* : *f_a* calculated by Ballou's formula
- f_{a-genedrop}: f_a estimated by gene dropping method

According to Ballou, f_a is the part of individual's genome that has undergone IBD in the past

$$f_{a} = \left[\left(f_{a(s)} \cup f_{s} \right) + \left(f_{a(d)} \cup f_{d} \right) \right] / 2$$

$$f_{a} = \left[f_{a(s)} + f_{s} - f_{a(s)} \cap f_{s} + f_{a(d)} + f_{d} \cap f_{a(d)} \cap f_{d} \right] / 2$$

$$\Pr\left(f_{a(s)} \cap f_{s} \right) = \Pr\left(f_{a(s)} | f_{s} \right) * \Pr\left(f_{s} \right)$$

$$= \Pr\left(f_{s} | f_{a(s)} \right) * \Pr\left(f_{a(s)} \right)$$
... dependent
$$= \Pr\left(f_{a(s)} \right) * \Pr\left(f_{s} \right) \dots \text{ independent}$$

 $f_a = \left[f_{a(s)} + f_s - f_{a(s)} f_s + f_{a(d)} + f_d - f_{a(d)} f_d \right] / 2 \quad \text{Ballou's formula}$

Conclusions

- Ballou's formula overestimated true ancestral inbreeding in all scenarios, because *fa* and *f* are not independent.
- Overestimation was not influenced by initial allele frequency and the genetic model.
- Overestimation occured earlier in smaller populations and reached higher values.

Conclusions

 The gene dropping method provided unbiased estimates for ancestral inbreeding in a neutral or a detrimental allele model but marginally biased estimates in a lethal allele model.

Thank you for your attention !!

17.06.2005

Background

Ancestral inbreeding coefficient (f_a)

$$f_a = [f_{a(s)} + (1 - f_{a(s)}) f_s + f_{a(d)} + (1 - f_{a(d)}) f_d] /2$$

Ballou's formula

$$f_a = [f_{a(s)} + f_s - f_{a(s)} f_s + f_{a(d)} + f_d - f_{a(d)} f_d] /2$$

- *f_a*: the cumulative proportion of an individual's genome that has been previously exposed to inbreeding in its ancestors
- f : inbreeding coefficient

