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Abstract

Quantitative trait loci may not only affect the mean of a trait but also its variability. A spe-
cial aspect is the variability between multiple measurements of genotyped animals, for example
the within litter variance of birth weights. Assuming a normally distributed trait a weighted
regression approach was developed, taking the transformed sample variance s2 between re-
peated measurements as observation for every genotyped individual. For the daughter-design
the weighted regression approach was evaluated in terms of precision of the estimation for the
QTL-position, statistical power and compliance with the desired error probability under the
null hypothesis.

1 Introduction

Analysis in quantitative trait loci (QTL) have been discussed by many scientists. In most cases
only the mean effect of QTL was pointed out. But it may be possible that QTL affect on the
variability of phenotypic values, too. For example, the advantage of increased mean of weights at
birth within a litter is destroid, when its variability presumes extreme values. So we are looking
for QTL which may affect the within litter variance of birth weights.

2 Theory

The considerations base on the following assumptions: The population of domestic pigs has two
alleles of the QTL, say Q and q. Further we look at a fixed number N of sires in our studies. The
sires are drawn by chance of the population. Every sire is mated with n unrelated dams of the
population. We pick out one daughter per mating. Thus we have a constant family size of n. The
daughters are mated with unrelated males of the population. The trait is multiple measured by
the offsprings of every daughter. The sample variance of the weights at birth within litter is taken
as characteristic for every daughter, which amounts to Nn observations.

The piglet’s phenotype is normally distributed and the following model is valid.

Yijk = µ + aij + gij + ω︸ ︷︷ ︸
=:µij

+aijk + gijk + eijk (1)
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i index of family
j index of daughter
k index of piglet
µ mean value of population
aij maternal additive genetic effect
gij maternal QTL effect depending on daughter’s genotype
ω random effect of litter and environment
aijk direct polygenic effect
gijk QTL effect depending on piglet’s genotype
eijk random deviation

µij combinates the constant values within a litter. No dominance effect is committed. The direct
polygenic effect aijk splits up into the mendelian sample distributed as N(0, 1

2σ2
polygene) and the

parental breeding values bij , which are fixed for each litter. The random deviation is distributed
as N(0, σ2

e) and the variance of the QTL effect is V(gijk) = σ2
QTL. The parents are not inbred.

The within litter variance σ2 depends on the daughters paternal allele. In case of Q passed on it is

σ2 =
1
2
σ2

polygene + σ2
QTL + σ2

e (2)

And otherwise the within litter variance is increased by a multiplicative factor c2.
The sample variance is calculated by the following equation. Capital letters are used for random
variables.

S2
ij =

1
nij − 1

nij∑
k=1

(Yijk − Y ij.)2 with E(S2
ij) = σ2 and V(S2

ij) =
2σ4

nij − 1

nij = fij+1 denotes the litter size of daughter ij. Because the variance of S2
ij depends on the within

litter variance σ2, we are looking for a variance-stabilizing transformation. Such transformation is
suggested by Box & Cox [1], for examples see Christensen [2, p.199]. It is with Tij = lnS2

ij

V(Tij) = V(lnS2
ij) ≈

2
fij

and E(Tij) ≈ lnσ2 (3)

And by the δ-method follows the asymptotical normal distribution

L
(√

fij(lnS2
ij − lnσ2)

)
⇒ N(0, 2) with fij →∞

The variance in equation (3) still depends on the litter size nij , but we will consider this known
variance by weighted examinations.

Figure (1) shows the convergence of
√

fij

2 lnS2
ij when σ2 = 1. Even with a relative small number

of degrees of freedom, the probability function of
√

fij

2 lnS2
ij approximates the standard normal

distribution well, also mentioned by Lehmann [7, p.376].

In the next steps the model for the weighted regression approach is determined. The sires have
the marker genotype of kind Ml,1Ml,2, where l denotes the marker position. The markers are
reduced to two alleles at the sire denoted by Ml,1 on the paternal allele and Ml,2 on the maternal
allele, respectively, for every marker position. Therefore it is not possible to determine which
sire is heterozygote or homozygote a priori. After the sires are genotyped, we suppose that all
daughters are full informative. That means, we only have to consider the daughters paternal allele.
Each daughter inherits the haplotype from the sire, where recombination events are possible. The
recombination rates are calculated by Haldane’s mapping function. We consider intervals flanked
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Figure 1: Approximation of the standard normal distribution

by markers of type Ml,rMl+1,s with r, s ∈ {1, 2}. The transmission probability prs for inheriting
the QTL allele Q of the heterozygote sire with genotype Qq is determined for every desired position
on the chromosome. Building the conditional variance of the repeated measurements Yijk results
to the variance within litter

V(Yijk|Ml,rMl+1,s) = σ2
rs with r, s ∈ {1, 2} and σ2

rs =
{

σ2 inheriting Q
(cσ)2 inheriting q

The conditional expected values of the transformed sample variance lnS2
ij = Tij are

E(Tij |Ml,1Ml+1,1) = p11E(Tij |Ml,1Ml+1,1, Q) + (1− p11)E(Tij |Ml,1Ml+1,1, q)

≈ p11 lnσ2 + (1− p11) ln(cσ)2

= ln(cσ)2 − p11 ln c2

E(Tij |Ml,1Ml+1,2) ≈ ln(cσ)2 − p12 ln c2

E(Tij |Ml,2Ml+1,1) ≈ ln(cσ)2 − p21 ln c2

E(Tij |Ml,2Ml+1,2) ≈ ln(cσ)2 − p22 ln c2

Under the assumption the sire is heterozygote with the genotype qQ we point out the sign change
in the second term of the expected values.
Therefore we can write with tij ∈ {p11, p12, p21, p22} , i = 1, . . . , N and j = 1 . . . , n for the investi-
gated position on the chromosome

Tij = ln S2
ij = mi + bitij + εij

Or in matrix way of writing with T = (T11, T12, . . . , TNn)T

T = Xβ + ε with ε is normally distributed.
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It is mi the mean value of family i, bi the slope of the regression line and ε the random error of
the model.

X =



1 0 · · · 0 t11 0 · · · 0
1 0 · · · 0 t12 0 · · · 0
...

... · · ·
...

...
... · · ·

...
1 0 · · · 0 t1n 0 · · · 0
0 1 · · · 0 0 t21 · · · 0
...

... · · ·
...

...
... · · ·

...
0 1 · · · 0 0 t2n · · · 0
0 0 · · · 0 0 0 · · · 0
...

... · · ·
...

...
... · · ·

...
0 0 . . . 0 0 0 . . . 0
0 0 . . . 1 0 0 . . . tN1

...
... · · ·

...
...

... · · ·
...

0 0 · · · 1 0 0 · · · tNn



, β =



m1

m2

...
mN

b1

...
bN


and ε =



ε11

ε12

...
ε1n

ε21

...
εNn



Because of our assumption we know the slope has to be

bi =


ln c2 genotype of sire i is qQ

0 genotype of sire i is qq
− ln c2 genotype of sire i is Qq

0 genotype of sire i is QQ

(4)

In recollaction of (3) we define a matrix of weights W . On the presumption that the daughters
traits are independent, the covariance matrix is W = V(T ). Because W is symmetric and positive
definite we find the partition W = PPT .

W =


2

f11
0 · · · 0

0 2
f12

· · ·
...

...
...

. . .
...

0 0 · · · 2
fNn

 , P =



√
2

f11
0 · · · 0

0
√

2
f12

· · · 0
...

...
. . .

...

0 0 · · ·
√

2
fNn


The simple regression model has changed into the weighted regression model

P−1T︸ ︷︷ ︸
=:Z

= P−1X︸ ︷︷ ︸
=:Q

β + P−1ε and therefore

Z = Qβ + ξ with ξ is distributed as N(0, INn) (5)

The parameter β is solved with the method of weighted least squares. Thus

β̂ = (QT Q)−1QT Z = (XT W−1X)−1XT W−1T

Now we are going to test the hypothesis H0 : b1 = · · · = bN = 0, that means no difference between
the marker genotyped daughters is obvious. In our consideration the failure of H0 is equal to the
existence of QTL which influences the traits.
Under the assumption of the approximately normally distributed vector Z we build with support
of Seber [9, p.97] the test statistic

F =
Nn− 2N

N

ZT (Q(QT Q)−1QT −Q1(QT
1 Q1)−1QT

1 )Z
ZT (INn −Q(QT Q)−1QT )Z

(6)
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Q1 = P−1X1 with the reduced matrix X1 consisting of the N first columns of X.
Under pointwise investigations and H0 is valid, F is distributed as a F-distribution with N and
Nn − 2N dregrees of freedom. If H0 fails on the presumed QTL-position, F is non-central F-
distributed with the non-centrality parameter λ = βT K(KT (QT Q)−1K)−1KT β. K denotes the
2N ×N matrix which is constructed by a N dimensional matrix of zeros and the identity matrix
of range N . H0 is rejected, if F > f1−α,N,Nn−2N , where f1−α,N,Nn−2N is the (1 − α)-quantile of
the central F-distribution with N,Nn − 2N degrees of freedom. α denotes the significance level,
we use α = 0.05. The pointwise p-value ppoint is calculated by 1− FN,Nn−2N (F ).

For the chromosomewise detection of a single QTL we have to consider dependencies between
the marker intervals. Therefore we use the procedure of a permutation test described in detail by
Good [4]. With this technique we receive an approximated distribution for the F-values over the
chromosome under H0. We follow the suggestion of Good [4, p.39] applying the blocking method.
Therefore we split up the data into blocks in this way, that each family generates one block. For
every block we resample the traits 100 times. The presumed phenotype - genotype connection is
canceled. For every resampled dataset we construct the F-value mentioned in (6) on every chromo-
somal position (1 cM). The maximal F-value of this permutation is kept in mind. We repeat this
for every resampling. Therefore the approximated distribution under H0 consists of the maximal
F-values of the resampled datasets. We calculate the maximal F-value of the original dataset and
compare it with the treshold value. The treshold is the (1-α)-quantile of the maximal F-values
of the resampled datasets. Churchill & Doerge [3] denoted this treshold by the experimentwise
critical value. The null hypothesis is rejected if F > treshold value. If H0 is rejected, we presume
the QTL on the position with the greatest F-value of the original dataset. The chromosomewise
p-value pchromosome is determined by the relation of the number of maximal F-values of the resam-
pled datasets, which are greater than the maximal F-value of the original dataset. We consider
only one chromosome, therefore we apply the Bonferroni correction to calculate the genomewise
p-value pgenome = 1− (1− pchromosome)nc, where nc is the number of chromosomes.

The estimation of the parameter c follows from (4), therefore we conclude

ĉi =
√

exp b̂i with i = 1, . . . , N (7)

The estimator b̂i is asymptotically normally distributed

L
(√

n(̂bi − bi)
)
⇒ N(0, σ̃i

2) with n →∞ and E(̂bi) = bi

σ̃i
2 =

[(
XT W−1X

)−1
]

i,i
=

∑n
j=1

1
wij∑n

j=1

t2ij

wij

∑n
j=1

1
wij

−
(∑n

j=1
tij

wij

)2 with wij =
2

fij

Thus ĉ2
i is approximately log-normally distributed with the expected value

E(ĉ2
i ) ≈


c2 exp σ̃i

2

2 genotype of sire i is qQ

c−2 exp σ̃i
2

2 genotype of sire i is Qq

exp σ̃i
2

2 sire i is homozygote
(8)

3 Simulation

When genotyping the individuals of the population we find markers in intervals of 10 cM on a
chromosome of length 100 cM. So we have 11 markers at our disposal. Under the null hypothesis
H0 no QTL is segregated in the population. In the simulation we placed a single QTL at position
25 cM (between the third and fourth marker). We simulated the obove described procedure with
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Figure 2: Variance of birth weights within litter (c = 1.17)

N = 4 sires and n = 200 daughters per family. The litter size is poisson distributed with mean
value of 10. The piglets refering to (1) are simulated with following values. The birth weights
varies from 700 gram up to 2300 gram, the population mean µ is assessed to be 1500 gram. In case
of inheriting Q the phenotypic standard deviation σphenotype is 250 gram at a rough estimate. The
variance of the maternal QTL effect is assumed to be 3 % of the phenotypic variance. The piglets
QTL effect takes the same value. The maternal additive genetic variance is 10 % of σ2

phenotype. The
direct polygenic variance is 15 % of σ2

phenotype, the residual variance σ2
e takes 64 % of σ2

phenotype

and finally the variance of litter effect and environment is 5 % of σ2
phenotype.

To simplify the simulation if q passed on, we modify the increased within litter variance. In this
case it is V(Yijk) = 1

2σ2
polygene +σ2

QTL +(c∗σe)2 with the multiplicative factor of random deviation
c∗ = 1.0(0.1)1.4 and thus

c2 =
1
2σ2

polygene + σ2
QTL + (c∗σe)2

1
2σ2

polygene + σ2
QTL + σ2

e

The simulations were repeated 100 times. The gene frequency pQ is presumed to be 1
2 . Using the

kernel-density-estimation of the statistic program R figure (2) shows the difference in distribution
in a simulation of four families. Even we only used 100 resamples in the permutation test procedure,
the results are satisfying as seen in figure (3) and (4). For example when c = 1.17 the simulated
QTL-position was detected 10 times accurately in case of H0 has been rejected. As figure (4)
shows, the detections closely surround the correct position, they mostly differ about five positions
from the right one. Precise detections increase to 21 % when c = 1.35.

In figure (5) it is obvious that the estimator ĉi parts. Because of the presumed gene frequency
the estimated values fluctuate around 1 for homozygote sires approximately with half the density.
Otherwise for heterozygote sires with genotype Qq or qQ the values of ĉi surround c and 1

c , re-
spectively, each case with quarter the density. The bias results from equation (8).

By repeating the simulations with an increasing ratio c the average of the p-values chromosome-
wise decreases down to 0.12 %. Figure (6) displays the average of p-values over 100 repetitions
depending on the ratio of standard deviation c.

6



0.0 0.2 0.4 0.6 0.8 1.0

2
4

6
8

Average of F−values from 100 simulations

position on chromosome

av
er

ag
e 

of
 F

−
va

lu
es

Figure 3: Average of F-values (pig, c = 1.17)

Histogram of detected QTL positions

position on chromosome

fr
eq

ue
nc

y

0.10 0.15 0.20 0.25 0.30 0.35 0.40
0

5
10

15
20

Figure 4: Detected QTL-positions (pig, c = 1.17)

Bias of estimates c

c ratio of standard deviation

fr
eq

ue
nc

y

0.8 0.9 1.0 1.1 1.2

0
10

20
30

40

Figure 5: Bias of estimator ĉi (pig, c = 1.17)
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4 Power

In the chromosomewise considerations we describe the empirical power π̂ by the proportion of
rejections as supported by Good [4, p.163]. In the simulation with c = 1.17 it is π̂ = 85 %. This
value doesn’t include that 8 times only homozygote sire were drawn by chance. Therefore the
actual power is much higher. In the repetitions with increasing ratio c up to 1.35 the empirical
power is 99 % at maximum.

Now we look on detail on the power in the case of pointwise investigations on the presumed QTL-
position. To calculate the power π(λ) = P(F > f1−α,N,Nn−2N |λ) = 1−FN,Nn−2N,λ(f1−α,N,Nn−2N )
we have to determine the non-centrality parameter λ, which is a priori unknown. We remind
λ = βT K(KT (QT Q)−1K)−1KT︸ ︷︷ ︸

=:M

β. The mean values mi containing in β could be ingnored, we set

m1 = . . . = mN = 0. Thus β has the form (0, . . . , 0, b1, . . . , bN )T with bi ∈
{
0, ln c2

}
, i = 1, . . . , N .

The order and the sign of bi are neglected because of the design of λ. For example under premise
there are two of four sires heterozygte, it is β = (0, 0, 0, 0, 0, 0, ln c2, ln c2)T . Therefore we have to
determine the power π(λ) depending on β, that means depending on the number of heterozygote
sires in our observations.
The probability P(sire is heterozygote)= 2pQ(1 − pQ) = 1

2 = p depends on the presumed gene
frequency pQ. We use the binomial distribution to calculate the probability pk that k of N sires
are heterozygote. We denote β = βk in the case k of N sires are heterozygote.

pk =
(

N

k

)
pk(1− p)N−k =

(
N

k

)
1

2N

Now we are able to calculate the power function π(λ, β) depending on β as suggested by Lehmann
[7, p.151].

Eβ (π(λ|β)) = p0π(λ|β0) + . . . + pNπ(λ|βN )

= p0π(βT
0 Mβ0) + . . . + pNπ(βT

NMβN )

= p0(1−FN,Nn−2N,βT
0 Mβ0

(f1−α,N,Nn−2N )) + . . . + pN (1−FN,Nn−2N,βT
N MβN

(f1−α,N,Nn−2N ))

To adapt this determination of π(λ, β) to the chromosomewise investigations, one could replace
f1−α,N,Nn−2N by the chromosomewise treshold value calculated by the permutation test. After
some calculations with use of the Frobenius-formula to invert a sparse matrix we receive the
2N × 2N matrix M . It is wij = 2

fij
with i = 1, . . . , N, j = 1, . . . , n.

M =



0 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...
0 · · · 0 0 · · · 0

0 · · · 0
∑n

j=1

t21j

w1j
−

(∑n
j=1

t1j
w1j

)2∑n
j=1

1
w1j

· · · 0

...
. . .

...
...

. . .
...

0 · · · 0 0 · · ·
∑n

j=1

t2Nj

wNj
−

(∑n
j=1

tNj
wNj

)2∑n
j=1

1
wNj


To organize an experiment, we may predict the power on pointwise investigations. To simplify the
calculations we use a single marker next to the presumed QTL-position. Using flanking markers
the power values are calculated analogously, but not shown here. Thus we construct the entries of
M assuming they are drawn by chance. We replace the entries by their expected values. We have
to calculate the transmission probabilities on the presumed QTL-position

pr = P(Q|Ml,r) with r ∈ {1, 2} , l ∈ {1, . . . , 10}
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We apply the worst case, the QTL is located in the middle of two markers. We may determine
p1 = 1− θ and p2 = θ, where θ is the recombination rate between Ml,1 and QTL calculated with
Haldane’s mapping function. The probability of inheriting the paternal allele of the sire is 1

2 . Xij

may be a random variable which is realized by tij ∈ {p1, p2}, thus Xij has a two-point-distribution

P(Xij = p1) =
1
2

and P(Xij = p2) =
1
2

We fix the litter size at the mean value nij = f + 1. It follows with wij = 2
f , i = 1, . . . , N, j =

1, . . . , n

E (Xij) = P(Xij = p1)p1 + P(Xij = p2)p2 =
1
2
(1− θ) +

1
2
θ =

1
2

E
(
X2

ij

)
=

1
2
p2
1 +

1
2
p2
2 =

1
2
(1− 2θ + θ2) +

1
2
θ2 =

1
2
− θ + θ2

E

 n∑
j=1

Xij

2

= nV(Xij) + (nEXij)
2 = n

(
1
2
− θ + θ2 + (n− 1)

1
4

)

E

 n∑
j=1

X2
ij

wij

 = n
f

2
E

(
X2

ij

)
= n

f

2

(
1
2
− θ + θ2

)

E


(∑n

j=1
Xij

wij

)2

∑n
j=1

1
wij

 =
f

2

(
1
2
− θ + θ2 + (n− 1)

1
4

)

Therefore the random entries of the second part of the diagonal M for i = 1, . . . , N are

E(Mi) = n
f

2

(
1
2
− θ + θ2

)
− f

2

(
1
2
− θ + θ2 + (n− 1)

1
4

)
= (n− 1)

f

2

(
1
4
− θ + θ2

)
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In figure (9) one can see, with usage of only two families the power never exceeds 75.49 %. From
this point of view it is useful to apply the test procedures on more than four families to obtain
an acceptable power. The used chromosomewise treshold value is determined as the average of
the chromosomewise tresholds from 100 reruns. The chromosomewise treshold is larger than the
(1−α)-quantile of the central F-distribution. Therefore the power is essentially less than 5 % under
H0 using this treshold. Analysis between two linked markers improves the results. Difference in
power values could be recognized, see figure (10). Considering two linked markers the power
depending on the ratio c increases faster than under investigations of a single marker.

In the simulations under the alternative hypothesis with c = 1.09 up to c = 1.35 the power increases
to 94.06 %. Minimal differences are obvious when using either the actual degrees of freedom per
litter or the mean value. The deviation within the range of the simulation is less than 0.9 % and
decreases to zero.

5 Second model for application

We consider N sires with n daughters of one population of dairy cattle. Normally distributed traits
are assumed in repeated measurements of wither heights, where the daughters are presumed to
be full-grown. Only a small number of measurements is taken, so the daughters don’t get used to
this procedure and no trend of measurements is committed. We are looking for QTL, which may
influence the behaviour. For every daughter the following model is valid.

Yijk = µ + aij + gij + ωij︸ ︷︷ ︸
=:µij

+eijk (9)

i index of family
j index of daughter
k index of measurement
µ mean value of population
aij parental breeding values and mendelian sample
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Figure 11: Detected QTL-positions (cow, c = 1.2)
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Figure 12: Bias of estimator ĉi (cow, c = 1.2)

gij QTL effect depending on daughter’s genotype
ωij random effect of environment
eijk random deviation

The components mentioned above in µij are fixed for every observation per daughter. The vari-
ance of repeated measurements depends on the daughter’s paternal allele. If Q passed on, then
L(eijk) = N(0, σ2

e), otherwise L(eijk) = N(0, (cσe)2) with a multiplicative factor c. Using these
considerations under the condition of flanking markers Ml,rMl+1,s with r, s ∈ {1, 2} the variance
within individual is

V(Yijk|Ml,rMl+1,s) = σ2
e,rs with r, s ∈ {1, 2} and σ2

e,rs =
{

σ2
e inheriting Q

(cσe)2 inheriting q

Expecting a heterozygote sire with genotype Qq it is with lnS2
ij = Tij

E(Tij |Ml,rMl+1,s) ≈ ln(cσe)2 − tij ln c2

Therefore we apply the weighted regression model (5) with a fixed number of measurements per
daughter. The degrees of freedom per individual are fij = f = 9, i = 1, . . . , N, j = 1, . . . , n.
Equation (7) is used to estimate the parameter c. The result of simulation is shown in figure (11)
for c = 1.2. The correct QTL-position has been detected 13 times properly. This figure displays,
that the detections disperse around the correct position very closely. The positions deviate about
two or three positions from the right one. The bias of ĉi is shown in figure (12).
The empirical power π̂ = 93 %, but in 6 cases of non-significance exclusive homozygote sires were
drawn by chance. The power on pointwise investigations enormously depends on the number of
measurements, analogous to figure (8). Therefore we repeated the simulation with c = 1.3 and
three times measuring the wither height expecting a loss of empirical power. In fact π̂ = 66 % and
the actual QTL-position has been detected 6 times accurately. Results are shown in figure (13)
and (14).

The F-test used for pointwise investigations behaves robust against non-normality, see Lehmann
[7, p.401]. The permutation test is a non-parametric approximation of the distribution under H0.
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Figure 13: Detected QTL-positions (cow, c = 1.3)
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Figure 14: Bias of estimator ĉi (cow, c = 1.3)

Thus we repeated the simulation of the model (9) using the non-normally distributed random
deviation eijk. We applied the Gamma-distribution Γ(α, β) with α = σ2

e and β = 1. Under this
circumstance the test procedure behaves robust as seen in figure (15) and (16). Using c=1.2 the
empirical power is π̂ = 94 %, but 6 simulations create homozygote sires only.

6 Discussion

Refering to Good [4, p.26] the permutation test is a powerful and unbiased test to check the
hypothesis H0: β = β0. Therefore we have constructed at least an asymptotic α-test when the
number of permutations increases to all possibilities of permutations (Nn)!.
Churchill & Doerge [3] suggested to use at least 1,000 resamples of the datasets. As the empirical
power of our simulations shows, applying the permutation test with only 100 resamples of the
original dataset is quite successful.

We mention that Haley & Knott [5] suggest to use one additional degree of freedom for the
presumed QTL-position in the divisor of equation (6). It is questionable, if those adjustment is
necessary. Under H0 the additional parameter for the QTL-position is not defined. Lander &
Botstein [6] recommend the application of an Ornstein-Uhlenbeck diffusion process to determine
the distribution under the null hypothesis.
In our investigations using the procedure of the permutation test the number of degrees of freedom
only serve as a scaling factor and could be neglected.

The parameter c2 declares the ratio of within litter variance when inheriting the allele q from
the heterozygote sire to the within litter variance when inheriting the allele Q. If the parameter
c is significantly different from 1, it is ambigious whether the within litter variance is affected by
the random deviation or by the enlarged polygenic variance or by an increased QTL variance, see
equation (2). When a non-significant result is observed, a constant within litter variance could
also be generated by e.g. an increased random deviation and decreased polygenic variance. The
parameter c is therefore just a net-effect for any changes of the components of the within litter
variance. In the investigations of the diary cattle the within individual variance is well-defined by
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Figure 15: Detected QTL-positions (gamma)
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Figure 16: Bias of estimator ĉi (gamma, c = 1.2)

the existence of only one component.
Weller [10] is engaged in this topic with main emphasis on selective genotyping. He pointed out
the economically importance of variance effects. For example, harvesting of fruits is efficient, if all
individuals are ripe at the same time.

The applied model of the daughter-design is expandable to the grand-daughter-design with some
modifications. Assuming N grandsires, each of them is mated to n unrelated grandams of the pop-
ulation. We select one son per mating. These sons are mated to m unrelated dams. One daughter
per mating is chosen to investigate the within litter variance. For each grand-daughter we have
to calculate the sample variance S2

ijk of birth weights, i = 1, . . . , N, j = 1, . . . , n, k = 1, . . . ,m.
Therefore we may assign to every sire the pooled variance of sample variances of his daughters
S2

ij = 1∑m
k=1 fijk

∑m
k=1 fijkS2

ijk. fijk denotes the degrees of freedom per litter. Thus we take as
observation for every sire the pooled variance and apply the techniques as mentioned above with
substitution of fij by

∑m
k=1 fijk in the covariance matrix W .

The F-2 or backcross design may be treated as special cases of this consideration.

In our examinations we presumed the gene frequency pQ = 1
2 . If we apply a decreased gene-

frequency e.g. pQ = 0.3, the prediction of the pointwise power is declined, see figure (17). In our
pointwise investigations using N = 4 sires the power is expected to be 88.72 % at maximum.

In further studies we still have to calculate the confidence interval to assess the quality of the
estimator β̂ and therefore also ĉ.
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